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In this paper, we investigate the scaling invariance of survival probability in the Caputo fractional standard
map of the order 1 < a < 2 considered on a cylinder. We consider relatively large values of the nonlinearity
parameter K for which the map is chaotic. The survival probability has a short plateau followed by an
exponential decay and is scaling invariant for all considered values of « and K.

1. Introduction

Differential equations are a fundamental tool for studying dynami-
cal systems, enabling the investigation of the evolution of observables
over time and capturing the long-term behavior of these systems. These
equations elucidate the rates of change in system variables and typically
involve integer-order derivatives. A generalization of this theory has led
to the rise of the field of fractional differential equations (FDEs) [1],
extending the conventional framework of differential equations by
incorporating fractional derivatives. This extension has countless ap-
plications in various scientific fields, such as quantum mechanics [2-
71, electrodynamics [8-11], economics [12-15], engineering [16-18],
biology [19,20], and geology [21].

Fractional derivatives come in various types, each with its unique
characteristics and applications. The most common among them in-
clude Riemann-Liouville, Caputo, Griinwald-Letnikov, Hadamard type,
etc. [1]. As initial conditions are crucial in physical dynamics, adopt-
ing the Caputo derivative in mechanical systems is convenient. This
choice is particularly useful since the initial conditions for specific
fractional dynamical systems align with those for usual dynamical
systems, allowing for a clearer physical interpretation of the system.

Sometimes, differential equations can be complicated. A way to
simplify the problem is to reduce it to the study of simple discrete
maps. This approach provides a simplified yet valuable perspective on
the dynamics of the system, enhancing its suitability for simulations
and computational studies. Maps, derived from equations of motion in-
volving fractional derivatives, exhibit a noteworthy characteristic: long-
term memory effects [22,23]. In this context, the present state of the
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system is uniquely determined by all past states, adding an intriguing
layer of complexity and historical dependence to the analysis.

Memory is a significant property of human beings and is the subject
of extensive biophysical and psychological research. The possibility of
investigating the dynamics of memory in neurons and proteins [24]
becomes attractive for the study of fractional maps.

An essential and insightful measure when exploring the statistical
characteristics of transport phenomena is the concept of survival prob-
ability. This probability quantifies the likelihood of a diffusing particle
remaining within a specific region at a given point in time. In the
context of fully chaotic systems, the behavior of survival probability
exhibits a distinct pattern over time, characterized by exponential de-
cay [25]. These properties have not been explored for Caputo fractional
maps.

Motivated by the above descriptions, this paper aims to explore
the dynamic characteristics of a Caputo Fractional Map obtained by
replacing the integer derivative with the Caputo derivative in the
equation of motion that originates the famous standard map (Chirikov—
Taylor Map). More specifically, we vary control parameters and observe
how they affect the survival probability, seeking invariance of scaling.

The layout of the study is as follows: The Caputo Fractional Stan-
dard Map is introduced in Section 2. In Section 3, a study of survival
probability is presented, varying all control parameters and demon-
strating that this observable is scaling invariant concerning the same
parameters. Finally, a discussion is provided in Section 4.
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Fig. 1. (a) Space phase (x,p) for K =23.0602 and a = 1.7; (b) Plot of the survival probability curves Pg(n) as functions of the number of collisions n, considering survival region
height in the range h € [25,200] computed for M = 10* orbits. The curves can be described by an exponential Pg(n)  exp(—&n); (¢) The behavior of the critical exponent ¢ as a
function of h. As can be seen, the relationship between height 4 and critical exponent ¢ is given by a power law, such that & « h”i, with an exponent g, = —3.42(8); (d) We display
the overlapping of the Pg(n) curves in a single universal curve, indicating the scaling invariance of the survival probability for the variations of survival region height 4.

2. The mapping

The standard map (also known as Chirikov-Taylor Map) [26,27]

{pn+l =Pn— K Sin(xn)
Xp41 =X, + P,y (mod 27)

(€Y

is the solution of the equation

X:—Ksin(x)i&(%—n) @
n=0

In this scenario, the perturbation involves a recurring sequence of
delta-function-like pulses, or “kicks”, with a periodicity of T and an
amplitude represented by K.

We can generalize this model by substituting the second derivative
with a Caputo fractional derivative. The left-sided Caputo fractional
derivative [1,28] of order « > 0 is defined by

1 ARG

rd-wJo @—oe+ ®

Epf(n) =

where /| € N such that / — 1 < « < [. Note that when « = m € N,
the Caputo Fractional derivative of order « becomes an mth usual
derivative, i.e.,

. d"f (D) _
o DI = —2= = 1,

for m € N.

In this way, the fractional Caputo generalization of (2) is given by

C na . — t

€ Dx(t) + K sin(x(1)) )\ 5 (? - n) =0 )
n=0

We can reduce the Caputo fractional differential equations to a
Caputo Generalization nonlinear Volterra integral equations of second
kind [29,30], such that x(¢) is a solution of (4) if and only if it is a
solution of the integral equation

-1

(k)
(1) = Z X (O)tk

k!

k=0
1 ! a—1 . < T .
+m/0(t—r) [Ksm(x(r))jgoﬁ(f—j)] dr

where / — 1 < a < I. Consider 1 < a < 2, thus Eq. (5) is equivalent to
the discrete map equations [22,23]

)

KT « w
Pt =P~ TR Ty Z:O(n+1—1) 2 sin(x;)
KT (6)

Xp41 = Xg + po(n+ DT — T(l)

Z(n +1 - Lsin(x))
j=0
(mod 27)

for 1 < « < 2. The Eq. (6) is named the Caputo Fractional Standard
Map (CFSM). Note that if « = 2, then Eq. (6) gives the usual map (1),
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Fig. 2. (a) Plot of the survival probability curves Pg(n) as functions of the number of collisions n, considering « in range the a € [1.65,1.95], K =23.0602, h = 100 and computed
for M = 10° orbits. The curves can be described by an exponential Pg(n)  exp(=£n); (b) We display the overlapping of the Pg(n) curves in a single universal curve, indicating the

scaling invariance of the survival probability concerning variations of a.
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Fig. 3. The behavior of the critical exponent ¢ as a function of « is depicted. As can
be seen, the relationship between « and the critical exponent ¢ is governed by a power
law, such that & « a2, with an exponent 8, = 15.1(9).

making the CFSM a generalization of the standard map. The CFSM has
no periodicity in p and can be considered on a cylinder.

The CFSM may generate periodic sinks, attracting slow-diverging
trajectories, attracting accelerator mode trajectories, chaotic attractors,
a cascade of bifurcations, and an inverse cascade of bifurcations type
of attracting trajectories have been reported in several studies [31-37].

Self-similarity, distribution of exit times, and survival probability
in the regular standard map were investigated in [38]. However, the
scattering properties of the CFSM map have not been explored yet.
Thus, in the next section, we undertake this task and characterize the
escape of orbits from the phase space of the CFSM.

3. Scattering properties: scaling invariance of survival probability

The concept of scaling invariance is a well-known idea across vari-
ous scientific and mathematical domains. It delves into the notion that
certain phenomena can remain unchanged even when their parameters
undergo rescaling or transformation. Essentially, if a system exhibits
scaling invariance, its expected behaviors stay consistent regardless of
scale. This characteristic is observed in diverse systems such as chaotic
dynamics [25], human dynamics [39] and social networks [40].

The main goal of this section is the study of the survival probability
of a trajectory remaining inside a specific region in the space phase,
considering the CFSM Map proposed in the previous section. More
specifically, our focus is on in investigating whether such behavior
exhibits scale invariance when subjected to certain alterations of the
mapping parameters.

To begin the analysis, it is essential to define the object of study:
the measure of the probability of survival, denoted as Pg(n) [41]. This
probability refers to the possibility of a given particle remaining inside
of a determined region after n interactions. Numerically, this measure
is computed as [25]

Pg(n) = % Y Hg(M.j). forneN<N, %)
j=1

where H (M, j) denotes the histogram associated with M distinct parti-
cles released in j collisions. To calculate this observable, an ensemble of
M distinct orbits is considered, with initial conditions set as x, = 0 and
random p, uniformly distributed in the interval (0,27/100). Each orbit
evolves according to CFSM (6) until the trajectory escapes a rectangular
region characterized by p < |a|. Thus the number of interactions up
to that instant is recorded, and then a new particle in the system is
initialized. This a procedure is repeated several times until the entire
ensemble of initial conditions is exhausted. Here, it is important to
mention that in our approach, each particles has the opportunity to
evolve within the system for up to N = 10° interactions if it has not
escaped before.

With the incorporation of this new characterization of the dynamics,
which is the survival region, three parameters, namely K, «, and h,
influence the study of scattering properties. The goal from now on is to
examine the influence of these parameters on the survival probability
and determine whether it exhibits the property of scale invariance.

To avoid the cascade of bifurcation-type trajectories (CBTT) [42],
which exists only in fractional dynamical systems, larger values of K
will be considered, ensuring that the dynamics are essentially chaotic.
The influence of these new types of attractors on the scattering prop-
erties will be investigated in future works.

Starting by keeping K = 23.0602 and a = 1.7 constants, the phase
space of (6) is illustrated in Fig. 1(a) and the survival probability Pg(n)
in the function of the number of interactions »n considering different
sizes for the survival region height A, as displayed in Fig. 1(b). One
can note that for medium and long values of interactions Pg obeys an
exponential decay as

Pg(n)  e™%". ®
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Fig. 4. (a) Plot of the survival probability curves Pg(n) as functions of the number of collisions n, considering K in range K € [15,50], a = 1.7, h = 100 and computed for M = 103
orbits. The curves can be described by an exponential Pg(n) « exp(—&n); (b) We display the overlapping of the Pg(n) curves in a single universal curve, indicating the scaling

invariance of the survival probability concerning variations of K.

Furthermore, the behavior of Py depends on the value of 4 assumed
such that, from a logical point of view, the higher the value of A, the
slower the decay of P occurs, suggesting a relationship between 4 and
& which is evident in Fig. 1(c), showing a power law function

g hl,

where g, = —3.42(8), (-) denotes the error of the previous digit. The
knowledge of f, allows us to re-scale the horizontal axis as n — nh/i
producing an overlap of the curves plotted in Fig. 1(b) into a single
and universal plot indicating that the exponential decay rate is scaling
invariant with size of survival regions, as shown in Fig. 1(d).

Now, let us vary a, keeping K = 23.0602 and A = 10 as constants. As
one can notice in Fig. 2(a), the shape presented for the decay of Pg(n)
for several values of a seems to be similar. This observation suggests
a potential scaling invariance for this measure. To investigate this
possibility, we examined Pg(n) under the following scaling hypotheses:

Exal,

where f, represents a critical exponent, which can be found through
the analysis of the numerical fitting of & vs. @, as shown in Fig. 3,
such that it is given by g = 15.1(9). Thus, knowing the value of g,
one can rescale the horizontal axis by transforming n — naf2. This
transformation results in overlapping curves as depicted in Fig. 2(a),
converging into a unified and universal plot in Fig. 2(b). This outcome
signifies the scaling invariance for Pg(n) concerning the parameter a.

Finally, after the preliminary results indicated that the survivor
probability is scaling invariant concerning 4 and «a, a question is raised:
Is the behavior of the survival probability Pg(n) scale invariant due to
variations of K?. To answer this, the analysis performed in Figs. 1(b)
and 3 is repeated, considering the following scaling hypotheses:

Ex K.

In Fig. 5, it is found that the value of the critical exponent is g; =
3.27(9). Thus, the curves in Fig. 4(a) overlap in a very good fashion
after an appropriate scaling transformation, as shown in Fig. 4(b),
confirming that the mapping presents scale invariance about K and
answering the question proposed previously.

4. Discussion
In this paper, some dynamical and statistical properties of a frac-

tional map were studied. Initially, a mapping was derived from a
fractional differential equation by considering the Caputo derivative
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Fig. 5. The behavior of the critical exponent ¢ as a function of K is depicted. As can
be seen, the relationship between « and the critical exponent & is governed by a power
law, such that & o K%, with an exponent f; = 3.27(9).

in the ODE that originates the Chirikov map. Thus, using an escape
formalism, the behavior of orbits in the previously obtained mapping,
referred to as the Caputo Fractional Standard Map (CFSM), was inves-
tigated. This map is parameterized by the control parameters K and
a. In the study of survival probability, a new control parameter 4 is
considered, and this observable now depends on (K, a, h). Varying these
parameters, P,(n) presents an initial plateau for short times, followed
by an exponential decay for medium and long times, as illustrated in
Figs. 1(b), 2(a), and 4(a). The behavior of survival probability allows
us to propose that it is described by Pg¢(n) « e77, where y is a
critical exponent that depends on the values of the assumed control
parameters, as displayed in Figs. 1(c), 3, and 5.

The overlap of the curves shown in Figs. 1(d), 2(b) and 4(b) con-
firms a scaling invariance observed for Survival probability when stud-
ied in the context of Caputo Fractional Standard Mapping (CFSM),
described in Eq. (6), for all control parameters (¢, K and h).
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