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Dynamical trapping occurs when the duration of time spent in specific regions of phase space increases, often
associated with stickiness around invariant islands during manifold crossings. This paper introduces the Hurst
exponent as a tool to characterize the dynamics of a typical quasiintegrable Hamiltonian system with coexisting
regular and chaotic regions. Beyond detecting chaotic orbits and sticky regions, applying a finite-time analysis
reveals a multimodal distribution of the finite-time Hurst exponent, where each mode corresponds to motion
around islands of different hierarchical levels. The advantage of the Hurst exponent method over other standard
techniques lies in its ability to quickly indicate chaotic dynamical structures. It effectively distinguishes between
quasiperiodic and chaotic orbits temporarily trapped in sticky domains using very short trajectories. Additionally,
since it operates based on time series data, it facilitates the exploration of trapping effects in dynamic systems
that lack well-defined laws, a common scenario in natural dynamics.
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I. INTRODUCTION

Hamiltonian systems represent a category of dynamical
systems that elucidate the dynamic behavior of particles
in motion, relying on the principle of energy conservation.
Within this group, a distinction arises between integrable and
nonintegrable Hamiltonian systems. In integrable Hamilto-
nian systems, the motion of particles follows regular and
discernible patterns. Conversely, nonintegrable Hamiltonian
systems present a more intricate and unpredictable nature,
where the phase space exhibits a complex combination of
regularity and chaos, featuring Kolmogorov-Arnold-Moser
(KAM) islands, invariant tori, spanning curves, and chaotic
seas [1]. Due to the existence of islands scattered throughout
the chaotic sea, the sea forms a fat fractal [2], making it hard to
say exactly where one island ends and another begins. Larger
islands are surrounded by smaller ones, and those smaller ones
are in turn surrounded by even smaller islands. This pattern
repeats at smaller and smaller scales, creating an endless
hierarchy of islands within islands. [3] These characteristics
introduce features such as dynamical traps, which affect the
diffusion process [4], leading to intriguing properties in the
dynamics.

In a general sense, the dynamical trap is a domain in
phase space where a particle (or its trajectory) can spend arbi-
trarily long finite time, performing almost regular dynamics,
called a flight, even though the entire trajectory is random
in any appropriate sense [5]. In a chaos scenario, there are
the dynamical traps named stickiness [6—12], which emerge
when orbits, initially influenced by chaotic dynamics, exhibit
a prolonged interaction with specific regions characterized
by regular behavior, such that these trajectories become tem-
porarily “stuck” or trapped to particular structures within the
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phase space for a time that may be, eventually, long. This
phenomenon affects global properties of the system, such as
the decay of correlations [8,13,14] and transport [9]. Before
escaping, the orbits are confined within a region bounded by
cantori [15], a Cantor set formed from the remnants of the
destroyed KAM tori. This structure serves as a partial barrier
to the transport in phase space and can be trapped in the
region cantori enclosed. Once inside a cantorus, chaotic orbits
can cross into an inner cantorus. This process can continue
to infinitely small scales within the hierarchical structure of
islands around islands [16].

A way to quantify these trap effects is the finite-time
Lyapunov exponent (FTLE) [17,18] that measures the ex-
ponential rates of principal divergences of the initially
neighboring trajectories during finite-time intervals. However,
computing requires a well-defined law that describes the orbit,
which is unavailable in some natural dynamics. Moreover,
these exponents might not be the most effective method for
detecting stickiness. Once an orbit is trapped, the largest Lya-
punov exponent decreases, slowing down its convergence—it
takes longer to reach its asymptotic (infinite-time) value.

Recently, a new method has been proposed to detect
chaotic orbits by calculating the Shannon entropy of the re-
currence time [19-21]. It has proven to be a better option
for distinguishing between regular and chaotic orbits than the
Lyapunov exponents. However, it has only applied in situa-
tions where the Slater theorem [22,23] is valid.

This paper presents a measure to identify regular, chaotic,
and sticky regions: the Hurst exponent, which is essentially
a measure of the long-term memory of time series. Using
the Hurst exponent, it is possible to distinctly identify both
the regular regions and the transitions to chaotic motion as a
system parameter varies. Additionally, computing the finite-
time Hurst exponent (FTH) distribution reveals a multimodal
pattern, where each peak corresponds to a distinct hierarchical
level within the islands-around-islands structure.
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This paper is structured as follows: In Sec. II, the Hurst
exponent is introduced. In Sec. III, the standard map is
presented, followed by a brief discussion of the properties
of two-dimensional quasiintegrable Hamiltonian systems. In
Sec. IV, the Hurst exponent is applied to detect and char-
acterize sticky orbits in this system. Moreover, a finite-time
analysis is conducted, leading to a distribution of the finite-
time Hurst exponent related to the motion around islands of
different hierarchical levels. Additionally, the methodology is
also applied to the bouncer and kicked Harper maps in Sec. V
to further validate the approach. Finally, Sec. VI presents the
concluding remarks.

II. HURST EXPONENT

The Hurst exponent, proposed by Hurst [24] in 1951 to
statistically model the cycle of Nile floods, is essentially a
measure of long-term memory of time series. The main ad-
vantage of the method is that it can be calculated with few
assumptions about the underlying system, given its broad
applicability for time series analysis in the finance market
[25-28], in electrocardiogram data, providing auxiliary fea-
tures for the classification of heart disease data [29], and in
some cases can be experimentally measured [30].

Essentially, the Hurst exponent is confined to the range
between zero and one, and categorized into three distinct
classes:

(1) H = 1/2 indicates random series (uncorrelated pro-
cess);

(2) H > 1/2 indicates a persistent (long-term memory,
correlated) process;

(3) H < 1/2 indicates an antipersistent (short-term mem-
ory, anticorrelated) process.

A wide array of computational algorithms are available
[31] for estimating the Hurst exponent, such as detrended
fluctuation analysis (DFA) [32], detrended moving average
(DMA) [33], periodogram method (PM) [34], etc. Among
them, the rescaled range analysis (R/S analysis) stands out as
the oldest and most renowned [24], popularized by Mandel-
brot’s works [35,36]. He found [37] that the fractal dimension
D and the Hurst exponent H are related by the expression
D =2 — H. This relation establishes the connection between
the statistical properties of time series and their underlying
fractal characteristics.

In this approach, given a time series X = X, X, ..
full length L, then

(i) Divide the time series into K subseries P, of length
£, such that the number of chunks K satisfies K = L/¢.
Each subseries is denoted by Py o = [X(k—1)e+1, Xke] with k =
1,2,...,K.

(i) Foreachsubseriesk = 1,2, ..., K, calculate the mean
k¢, standard deviation Si ., and the deviations from the
mean:

.,XLOf

Do = Pire— M,

where i denotes the elements.

(iii) Compute cumulative sums of deviations

i
Zike = E Dij e
=1

fori=1,2,...,¢.
(iv) Calculate the range of the cumulative deviation R,, of
each subseries Z,

Rie = max (Z; ;) — min (Z;¢).
1<i<t 1<i<t

(v) Calculate the mean of the rescaled ranges,

K
R 1 e~ R
(R/S)4=<—”> == =
Seelr K= Ske

(vi) Repeat the process considering another value for £,
that is, dividing the time series into another number of sub-
series.

(vii) Estimate the Hurst exponent H by assuming a power-
law relationship

(R/S); = Ce"

and use regression analysis to find H.

Note that a unique Hurst value is associated with the size L
of a time series. Therefore, the notation H (L) will be utilized
throughout the text.

In the case of a bidimensional temporal series W =
X, h), (X, 1), ..., Xy, Y1), it is necessary to adapt the
R/S analysis. The time series is divided into K chunks as
before; however, each subperiod is now defined by P, =
(Xk—1ye+1, Yk—1)e+1, - - - » Xk, Ye). The method is executed in
the same manner, with the length of each subseries now being
2¢.

In the Appendix, a scheme of the method utilized in this
paper is presented, designed to enhance clarity and intuitive
understanding.

III. STANDARD MAP

It is appropriate to present results employing a widely
recognized general model with extensive applications, the
Chirikov standard mapping, as defined by Chirikov [38],

Pny1 = pp — K sin(x,) mod 27,
Xng1 = Xp + Pug1 mod 27,

ey

where K is the nonlinearity parameter, and x,, p, are the
position and momentum at discrete times n € N. For K = 0,
the dynamics are regular, and the system is integrable, with
every orbit lying on a rotationally invariant torus. As K in-
creases, some irrational tori remain invariant while resonant
tori are destroyed, as described by the KAM theorem. This
progression allows for the possibility of observing chaotic be-
havior under appropriate initial conditions. Specifically, when
K reaches the critical value K. ~ 0.97163540631 [39], the last
invariant rotational torus is destroyed. For K > K, the system
exhibits large chaotic orbits, indicative of a global stochastic
scenario (global chaos) [40]. Moreover, the system displays
sticky behavior, in addition to strictly regular and chaotic
regions [41].
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FIG. 1. Phase space of the standard map for K = 2.5.

In the scenario where the phase space contains quasiperi-
odic islands mixed with regions of chaotic orbits, one would
expect to observe stickiness. Figure 1 illustrates this situa-
tion considering K = 2.5, where each orbit was iterated for
N = 10°. The quasiperiodic orbits are illustrated by the colors
purple and cyan with initial conditions (xg, yo) = (0.25, 0)
and (xp, yo) = (1, 0), respectively, while the chaotic orbit is il-
lustrated in black generated by the initial condition (xg, yo) =
(2,0). The blue points in the phase space denote the initial
conditions used to generate the orbits.

This configuration will be utilized in the paper to inves-
tigate the occurrence of stickiness. The next section will
characterize this phenomenon using the Hurst exponent.

IV. INFLUENCE OF TRAPS IN THE DYNAMICS
OF THE STANDARD MAP

The concept of stickiness is typically characterized using
Lyapunov exponents [42]. However, these exponents have
certain limitations: their computation relies on a well-defined
law describing the orbit, which is often unavailable in nat-
ural dynamics. Moreover, once an orbit becomes trapped, the
largest Lyapunov exponent decreases, slowing its convergence
toward its asymptotic (infinite-time) value. In this section, we
evaluate the Hurst Exponent for the standard map and demon-
strate its utility in characterizing the system’s dynamics.

The most traditional and widely recognized method for
characterizing the dynamics of a system is through the eval-
uation of Lyapunov exponents [43—45], which quantify the
average rate of expansion or contraction for a small volume
of initial conditions. The Lyapunov exponents are defined as
[46]

1
A;= lim —1In |A§")

n—oon

5 j:172""ad7

where j are the eigenvalues of the matrix M = []._, J; with
J; being the Jacobian matrix evaluated over the orbit, and
d is the dimension of the system. For our two-dimensional
system (d = 2), there are two exponents, A and X, satisfying
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FIG. 2. (a) The maximum Lyapunov exponent A, and (b) the
Hurst exponent H for the standard map, plotted as functions of the
parameter K with the initial condition (xy, po) = (0.0, 1.3).

A1 2 Ap. The maximum Lyapunov exponent, Amax = Aj, iS
used to characterize the system’s dynamics: periodic regimes
are indicated by a negative Ay, while chaotic dynamics are
identified by a positive Ay.x. When an orbit is captured by
a dynamical trap for a period of time, certain properties are
affected, particularly the maximum Lyapunov exponent, Amax-
Although both chaotic and sticky orbits exhibit positive values
of Amax, the value for a sticky orbit is lower than that of a
chaotic orbit. For a quasiperiodic orbit, A, is small but not
exactly zero, due to the finite iteration time, N.

First, let’s compare the maximum Lyapunov exponent with
the Hurst exponent. In Fig. 2(a), this comparison is shown,
where the values of A,,x and H of the standard map are plotted
as functions of the nonlinearity parameter K, with a fixed
initial condition (xo, po) = (0.0, 1.3) iterated for N = 210,
This plot reveals windows of regularity characterized by Amax
being zero and H taking on low values. Although the Lya-
punov exponent approaches zero more rapidly near the elliptic
point [47], it alone cannot differentiate between periodic and
quasiperiodic orbits in bidimensional Hamiltonian systems.
Note that for several values of the parameters K, the Hurst
exponent H is close to zero, indicating that at these points,
the initial condition (xo, pg) = (0.0, 1.3) is very close to a
periodic orbit, as illustrated in Fig. 2(b).

Directing our attention to the phase space, Fig. 3 displays
the values of An.x and H for a grid of initial conditions
uniformly distributed in the phase space (x, p) with K = 2.5,
where the initial condition was iterated for N = 2%, It in-
cludes a zoom into one of the four-period satellite islands,
as well as exploration in the parameter space. One can ob-
serve that the Hurst exponent H captures the characteristics
exhibited by the Lyapunov exponent and more. In the chaotic
sea, where An,x is large, H is also large. Conversely, inside
the islands, where A« is low, the H is correspondingly low.
Additionally, in regions where the rotation number of an orbit
approaches a rational value, H is smaller [indicated by the
transition from purple to black in 3(d)], characterizing trapped
regions [48,49]. Moreover, Fig. 3(f) clearly shows transitions
from regular to chaotic behavior, as well as bifurcations as K
changes. Finally, it is observed from Figs. 3(g)-3(l) that all
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FIG. 3. (a)~(c) The maximum Lyapunov exponent A, and (d)—(f) the Hurst Exponent H for the standard map, evaluated on a 2'° x 2'0
grid of uniformly distributed points in the phase space (x, p), with K = 2.5. Subfigures (a), (b), (d), (e), (g), (h), (j), and (k) depict results in
the phase space, while (c), (f), (i), and (1) show results in the parameter space (K, p), with xo = 0. (b), (e), (h), and (k) provide magnified views
of the regions delineated by the white rectangles in (a), (d), (g), and (j), respectively.

the conclusions drawn in the preceding analysis remain valid
when reducing the number of interactions, i.e., considering a
shorter time series. In these scenarios, it is evident that the
regions with low values of H increase, and the trajectories of
orbits passing through the four principal islands continue to be
consistent. Finally, the results stay robust for different values
of the nonlinear parameter, as shown in Fig. 4.

After these analyses, the results demonstrate that the Hurst
exponent is an excellent measure for distinguishing between

periodicity, weak chaos, and strong chaos. Additionally, it is
a fast indicator for chaotic dynamical structures, obtaining
robust results with the Hurst exponent using only a short time
series of 2% data points, as illustrated in Figs. 3()-3(1).

A way to quantify dynamical traps is the finite time
Lyapunov exponent (FTLE), which can also characterize
stickiness in high-dimensional Hamiltonian systems [42].
Szezech et al. [18] demonstrated that in phase spaces with
stickiness regions, the distribution of finite-time Lyapunov ex-
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FIG. 4. The Hurst exponent H for the standard map, evaluated on a 2! x 2!° grid of uniformly distributed points in the phase space (x, p)
considering the nonlinear parameter as (a) K = 0.9, (b) K = 1.6, and (c) K = 6.908745.

ponents is bimodal. However, Harle and Feudel [50] suggest
that the minor peak in this distribution consists of multiple
peaks, and Sales et al. [19] verified this hypothesis using
recurrence time entropy.

Examining any single chaotic orbit over a long duration
reveals that the particle, while essentially confined within the
chaotic sea, passes near periodic regions and may become
trapped for a significant period before eventually escaping to
the chaotic sea. Therefore, it is essential to conduct a finite-
time analysis to accurately detect transitions between different
regimes in the orbit’s dynamics.

To perform this analysis, an initial condition (xg, pg) is
chosen from within the chaotic sea. This initial condition is
iteratively evolved to generate a time series of length N. Sub-
sequently, this series is segmented into windows of size 7', and
the Hurst exponent H is computed for each window, denoted
as FTHr(N). An alternative approach involves evaluating a
single chaotic orbit over a time interval T, calculating H,
and repeating this process by initializing a new orbit at the
end of each iteration, performing M = N/T times. Addition-
ally, the probability distribution of the Hurst exponent over
finite-time intervals, P(F T Hr(N)), is defined by constructing
a frequency histogram of FT Hy(N). In Figs. 5(a)-5(c), this
distribution is depicted for N = 2% with the initial condition
(%0, po) = (—3,0)and K =2, 5.

Such distributions can be understood as follows: when
the orbit is in the chaotic region, the distribution tends to
exhibit values near the larger maximum. However, when the
trajectory remains trapped for some time, small values for the
Hurst exponent are registered. When the orbit is confined near
an island, it may enter a deeper level within the hierarchical
structure, resulting in a multimodal distribution. Therefore,
the infinite hierarchical islands-around-islands structure is re-
sponsible for the multiple small peaks in the distribution.

A critical consideration when employing finite-time Hurst
exponents (FTH) is the potential time dependence of the
results. Specifically, with longer observation periods and dif-
ferent time windows, would the distribution of FTH vary? To
investigate this, Figs. 5(a)-5(c) illustrate the FTH distribution
for three distinct time windows, and Fig. 6 shows results
across three different trajectory lengths N ata K = 2.5 value.
Remarkably, the findings demonstrate insensitivity to the total

duration of system iteration. This observation is due to the
phenomenon in Hamiltonian systems where longer trajecto-
ries increase the likelihood of encountering trapping regions.
Moreover, greater trajectory lengths enhance the probability
of encountering trap regions with prolonged times. Conse-
quently, finite-time Hurst exponents serve as a valuable metric
for assessing the significance of trap regions in system dynam-
ics, offering a robust statistical representation across the entire
phase space.

To identify the regions corresponding to distribution peaks,
phase space positions are plotted in Fig. 5 based on the Hurst
exponent values, considering distinct time window sizes of
26,27, and 28. Each peak of the distribution is represented
by a color in the phase space, indicating different hierarchical
levels within the structure, discernible through Hurst analysis.
Figures 5(d)-5(f) illustrate the manifolds where nontrapped
orbits exit sticky regions [51], highlighting nonhyperbolicity,
which can restrict chaotic orbits from accessing certain do-
mains due to stable and unstable manifold tangencies [52].
In addition, Figs. 5(g)-5(i) depicts hierarchical levels around
the four-period island, with all island chains being very well
evident even when changing the time window size.

V. APPLICATIONS IN OTHER MODELS

To validate the use of the Hurst exponent in characterizing
dynamical traps in Hamiltonian systems, this formalism is
applied to two additional systems: the bouncer model and the
kicked Harper map.

A. Bouncer model

The bouncer model describes a simple dynamical system
where a classical particle, like a ball, moves vertically under
the influence of a constant gravitational field and repeatedly
bounces on a periodically oscillating surface. The origins of
this model trace back to Pustyl’nikov’s work [53-55], where
he rigorously demonstrated that certain parameter choices
can lead to an unbounded increase in the particle’s veloc-
ity, a phenomenon known as “Fermi acceleration” [56]. The
system’s dynamics depend on the nature of the collisions,
which can be categorized as (i) multiple collisions, where
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FIG. 5. The finite-time Hurst exponent distribution for a single chaotic orbit, with N = 2%, K = 2.5, and (xo, yo) = (-3, 0) and time
window (a) T = 26, (b) 27, and (c) T = 2%; (d)—(f) the phase space points that generate the minor peaks in (a)—(c), respectively; and (g)—(i) is
a magnification of one of the four-period satellite islands of (d)—(f), respectively, indicated by the white rectangles. The colors in (d)—(i) match

the filling colors of the distribution in (a)—(c).

the particle repeatedly interacts with the moving wall before
exiting the collision zone (defined as the region where the wall
moves), or (ii) a single collision, where the particle leaves the
collision zone after impact. Both scenarios typically require
solving transcendental equations. To avoid the computation-
ally expensive process of solving these equations—especially
in the past when computing power was limited (see [57] for
historical context)—a simplified version was introduced. In
this approximation, the wall is assumed to be fixed, elim-
inating the need to calculate the time between collisions
using transcendental equations. Instead, at each collision, the
particle undergoes an exchange of energy and momentum
as if the wall were moving. This approach preserves most
of the properties observed in the full version of the model

while simplifying the computations by avoiding transcenden-
tal equations. In this static wall approximation, the position of
the wall is no longer considered, and the canonical variables
become velocity and time, since the phase space has a repeat-
ing structure in 7 in the velocity axis [58], will be considered
mod(mr) for velocity. Thus, under these considerations, the
mapping that describes the dynamics of the model can be
expressed as [58—60]

Vi1 = |V — 2e sin(¢y11)|
Gnr1 = Pp + 2V, mod 27,

where a set of dimensionless variables is introduced: € =
ew?/g, V, = v,0/g, and ¢ = wt. In this context, v, is the
particle’s velocity, g is the gravitational constant, and ¢ and

mod 7,

@
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FIG. 6. Behavior of the finite-time Hurst exponent for different
sizes of time series.

w are the amplitude and frequency of the wall’s oscillation,
respectively. The modulus function is used to prevent the
particle from moving beyond the wall.

Applying the methodology based on the Hurst exponent
to detect dynamical traps, in Fig. 7(a), the calculation of
H for a grid of initial conditions uniformly distributed in
the phase space (x, p) with K = 0.4 is performed, where
the initial conditions were iterated for N = 2'°. One can see
that in the region dominated by the chaotic sea, H assume
high values. Conversely, inside the islands, the values of H
becomes low. Performing afinite time analysis in order to
quantify this phenomenon, it exammines a single chaotic orbit

with initial condition (1, 1) of size N = 2%° and it calculates
the FT Hr(N), considering time window size of 128.

Applying the methodology based on the Hurst exponent to
detect dynamical traps, Fig. 7(a) shows the values of H for
a grid of initial conditions uniformly distributed in the phase
space (x, p) with € = 0.4, where the initial conditions were
iterated for N = 2'°. It is observed that in regions dominated
by chaotic behavior, H assumes high values, while within
the islands, H takes on lower values. To further quantify this
phenomenon, a finite-time analysis is conducted by examining
a single chaotic orbit with the initial condition (xg,yp) =
(1, 1) over a large number of interaction N = 2 iterations,
and the finite-time Hurst exponent FTHr(N) is calculated
using a time window size of 128. Figure 7(b) displays the
probability distribution P(F T H}23(2%°)) for € = 0.4. Livoratti
et al. [58] reported that for this value of €, the distribution
of the finite-time Lyapunov exponent is bimodal. However,
Fig. 7(b) shows that the minor peak actually consists of multi-
ple peaks. In Fig. 7(c), these multiple peaks in the distribution
are mapped to corresponding regions in the phase space, with
each peak represented by a different color. The results indicate
that the distinct peaks in the distribution correspond to differ-
ent hierarchical structures within the phase space, as identified
through the Hurst analysis.

B. Kicked Harper map

The Harper model, introduced in 1955 [61], describes the
motion of crystal electrons in a two-dimensional lattice under
a magnetic field, specifically the effect of a uniform mag-
netic field on a conduction-band metal, where a tight-binding
approximation for symmetric cubic crystals is assumed. The
semiclassical interpretation of the Harper model leads to an
effective one-dimensional Hamiltonian, expressed as [62]

Hum(q, p,t) = —Vacos(2rp) — Vi cos(2m q). 3)

The properties of the Harper Hamiltonian, as described by
Eq. (3), have inspired studies on the transition from regular to
chaotic behavior, particularly through a variant known as the
kicked Harper model. This generalized version of the Harper
model is expressed as [63,64]

Hgnm(q, p,t) = =VacosRmp) — VicosRuq)K() (4)
with
Kit)=r1 ZS(t — nt),

where m is an integer, t is the period between the kicks, and
V| and V; are constants.

In the limit T — 0, the model (4) reduces to the contin-
uous time evolution of the Harper Hamiltonian Hyy, given
by Eq. (3), which is integrable from a dynamical perspective,
but for nonzero values, it displays more complex dynamics.
The classical map resulting from integrating the equations of
motion between successive kicks is given by [65-67]

DPnt1 = pp — Y18in(2mgq,) (mod 1), )
dnil = qn + V2 SiH(ZJTPn-s-l) (mOd 1)a

where y; = 27'V;t. The motion is confined to a toroidal phase
space (g, p) € [0, 1) x [0, 1). In addition, this map can also be
derived from the Hamiltonian of the kicked oscillator model,
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FIG. 7. Application of the methodology to the bouncer map (2) with € = 0.4. In (a), the Hurst exponent is calculated on a 2'° x 2'° grid
of uniformly distributed points in the phase space (x, p), considering an orbit of length 2'°. In (b), the finite-time Hurst exponent distribution
for a single chaotic orbit is shown, with N = 23°, initial conditions (xo, yo) = (1, 1), and a time window T = 27. In (c), the phase space points
corresponding to the colored peaks in the distribution from (b) are depicted.

which is a linear’ oscillator excited by periodic §-like impulses
[68,69]:

Hyxom(u, v, t) = %(u2 + v2) — K cos(q)t Za(t —nr),
(6)

where u and v represent the dimensionless momentum and
position, « is the oscillator’s rotation angle between kicks,
t is the dimensionless time, and K is the kick strength. The
differential equation for this motion (which is equivalent to
that of a particle moving in a constant magnetic field and
subjected to a wave packet traveling perpendicularly to it), can
be represented in mapping form [70,71]:

Uy = (u, + K sinv,)cosa + v, sina, @)
Unt1 = —(u, + K'sinv,) sina + v, cos o. (8)

Under the resonance condition [72] o = 27”, the particle
experiences g kicks over a full oscillation period. For g = 4
(resulting in four kicks per oscillation period), iterating the
map four times and retaining only the lowest-order terms in
K, we obtain an alternative form of the “kicked Harper map”

[73]:

Upa1 = v, — 2K sin(uy,), ©)
Upt1 = Uy + 2K Sin(”n-‘rl)-

Note that Eq. (9) is equivalent to Eq. (5) when y; = y» =
2K. Thus, the discussion in this paper will consider the kicked
Harper map given by (5) restricted to the special case where
M=rnr=v.

This model has numerous applications, including the study
of charged particles interacting with an electrostatic wave
packet in a transverse uniform magnetic field [68,74,75], the
motion of electrons in a two-dimensional periodic potential
with a uniform magnetic field [64,76], and the steady-state
dynamics of ideal incompressible fluids [77,78].

Performing a Hurst exponent analysis to detect dynamical
traps, Fig. 8(a) illustrates the values of H across a grid of
initial conditions uniformly distributed within the phase space
(x, p) for y = 0.25. The initial conditions were iterated up
to N =2'0 It is observed that H exhibits high values in
chaotic regions and lower values within the islands. To better
understand this behavior, a finite-time analysis was performed
on a single chaotic orbit with the initial condition (xg, yg) =
(0.5,0.1), using N = 2% iterations and a time window size

1.0 615) 1.0
0.8 06 = 0.8
o
2.4
0.6] 048> % 0.6
X (S X B -
0.4 B & 0418
02 =2
0.2 = 0.2
/0 L 0.0 o 0.0
00 02 04 06 08 10 0.2 0.4 0.6 0.8 0.0
X FTH»56(20) X

FIG. 8. Analysis of the stickiness in the kicked Harper map (5) with y = 0.25. In (a), the Hurst exponent is evaluated on a 2! x 2! grid of
uniformly distributed points within the phase space (x, p), using an orbit of length 2!°. In (b), the distribution of the finite-time Hurst exponent
for a single chaotic trajectory is shown, with N = 23, initial conditions (xo, yo) = (0.5, 0.1), and a time window T = 2%. In (c), the phase
space points responsible for the colored peaks in the distribution from (b) are depicted.
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FIG. 9. Scheme evidencing the construction of the partition of a bidimensional time series and the structure of the cumulative sequence for

R/S analysis. Note that ¢; := (k — 1)€ and £x := (K — 1)L.

of T = 256. Figure 8(b) presents the probability distribution
P(FT H,s56(23%)) for y = 0.25 that reveal a multimodal distri-
bution where the largest maximum corresponding to chaotic
sea regions and the different minor peaks are due to the
hierarchical islands-around-islands structure embedded in the
phase space. Figure 8(c) correlates these multiple peaks with
specific regions in the phase space, each represented by a
different color. Note that the area in the distribution repre-
sented by the green points indicates chaotic orbits that are
restricted from accessing specific regions due to the tangency
of stable and unstable manifolds [79]. This peak reflects the
influence of these manifolds. The yellow regions, on the other
hand, represent the chaotic seas that exist among the islands.
Additionally, the other smaller peaks correspond to various
hierarchical levels around the islands.

VI. CONCLUSION

Stickiness is a crucial phenomenon in nonlinear dynamics
that is difficult to identify in Hamiltonian systems. Various
methods for detecting sticky orbits in the phase space of two-
dimensional area-preserving systems have been proposed and
studied in previous research [18,19,80-82], but these methods
typically require a large number of iterations of the map and
prior knowledge of the positions of the islands in the phase
space. This paper introduces the use of the Hurst exponent to
identify and characterize the stickiness effect in the standard
map. This method distinguishes between different types of
motion in dynamical systems with less complexity than tech-
niques involving recurrence time entropy and Lyapunov ex-
ponents, for example. Additionally, it operates based on time
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series data, eliminating the requirement for a precisely defined
orbit law, which is often unavailable in natural dynamics.

The study reveals insightful relationships between the
Lyapunov exponent Anm.x and the Hurst exponent H, as
demonstrated in three distinct scenarios [Figs. 3(a) and 3(d),
and 3(c) and 3(f)]. This similarity underscores the potential
utility and validity of the Hurst exponent in applications tra-
ditionally reliant on Lyapunov exponents. Additionally, the
study demonstrates that similar conclusions about dynamics
can be drawn using the Hurst exponent with smaller time
series.

For systems exhibiting the stickiness effect, transitions
occur from fully chaotic motion to various levels within the hi-
erarchical structure of islands around islands. When the Hurst
exponent was computed in these scenarios, the distribution
of finite-time Hurst exponents (FTH) exhibits a multimodal
characteristic, with each peak representing a distinct hierar-
chical level of islands. Furthermore, the robustness of these
results is confirmed across different time series lengths and
time-window sizes.

Lastly, the methodology was applied to two additional
models, the bouncer model and the kicked Harper map, to
demonstrate that the Hurst exponent can characterize stick-
iness in these systems. This extension provides a broader

context for the results and confirms their relevance beyond
the Chirikov standard map. The analysis reveals a multimodal
distribution, highlighting the presence of dynamical traps, and
establishes correlations between the peaks and various struc-
tures within the phase space.
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APPENDIX: SCHEME OF THE ADAPTED R/S ANALYSIS

The most famous method of estimating the Hurst exponent
H is R/S analysis or range-rescaled analysis. This method in-
volves rescaling the range with the standard deviation. While
R/S analysis is typically applied to one-dimensional time se-
ries, adaptations are necessary to apply it to bidimensional
series, specifically by modifying the construction of the parti-
tion. In this Appendix, Fig. 9 presents a scheme of the adapted
R/S analysis for a bidimensional time series. To simplify, the
notation £, := (k — 1)¢ and £g := (K — 1)£ is used.
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