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ABSTRACT

The dynamics of the convergence for the stationary state considering a Duffing-like equation are investigated. The driven potential for these
dynamics is supplied by a damped forced oscillator that has a piecewise linear function. Fixed points and their basins of attraction were
identified and measured. We used entropy basin techniques to characterize the basins of attraction, where a changeover in its boundary basin
entropy is observed concerning the boundary length. Additionally, we have a set of polar coordinates to describe the asymptotic convergence
of the dynamics based on the range of the control parameter and initial conditions. The entire convergence to the stationary state was
characterized by scaling laws.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0233700

A Duffing-like equation is studied considering a driven potential
given by a piecewise linear function. The modeling has applica-
tions in several areas, such as electronic circuits, synchronization,
mechanical systems, and biology, among others. For a specific
range of the control parameter, we set two attracting fixed points
and characterized their basins of attraction. Through the analy-
sis of the entropy basin, we observed a transition in the boundary
basin entropy for a given critical control parameter. The results
indicate a transition in the length of the basin boundary. To inves-
tigate the asymptotic convergence of the dynamics to the fixed
points more precisely, we applied a linear to polar coordinates
transformation, which presented itself as a useful metric for the
description of the convergence to the stationary states, and by
varying ranging the control parameter and initial conditions, an
exponential decay to the fixed points was observed. We have pro-
posed some scaling law arguments to describe this behavior, and
the numerical results we obtained are in good agreement, since
a single and universal plot was drawn. These results confirm the
robustness of the formalism, which may be extended to other
similar dynamical systems.

I. INTRODUCTION

Nonlinear differential equations are often used to describe the
behavior of dynamical systems. Depending on the nonlinear terms
involved in the equations, a rich variety of nonlinear phenomena

can be observed, considering both conservative and dissipative
dynamics.1,2 A variation in the control parameters of the system
may lead the dynamics to exhibit phase transitions, which, in the
context of statistical mechanics, can be linked to abrupt changes in
spatial structure.3,4 In contrast, alterations in the phase space struc-
ture are specifically associated with phase transitions in dynamical
systems.5–7

A useful technique to describe such phase transitions is scaling
analysis, where near the criticality, the dynamics can be character-
ized via critical exponents,8–14 especially if there is an asymptotic
behavior of some physical observable.15–20 In addition, scaling laws
can contribute to the development of more precise and robust math-
ematical models for the description of complex phenomena.21 The
importance of scaling laws extends to several areas, including the
physics of critical phenomena;22 materials science;23 macro, micro,
and nanoscales;24 multifractal objects;25 astronomy;26 fractional
dynamics;27 plasma physics;28,29 biology;30,31 and engineering;32,33

among many other applications.34

One of the most widely researched nonlinear dynamical sys-
tems is the Duffing oscillator.35 The nonlinear terms in the differ-
ential equation of this system make it possible to analyze several
complex phenomena such as bifurcations,36–38 resonance,39–41 and
chaotic transitions.42–44 In addition, the nonlinear dynamics of the
Duffing equation has direct applications in several areas, includ-
ing biology,45,46 laser dynamics,47 materials engineering,48–51 and
electrical circuits,52–55 among others.
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In this paper, we revisit and investigate the dynamics of the
convergence to a stationary state, for a set of differential equations
given by a Duffing-like equation, where a damped forced oscilla-
tor, with a piecewise linear function sets the driven potential for the
dynamics. In this scenario, fixed points are obtained and character-
ized, as well as their basins of attraction. We used entropy basins
techniques56–61 to characterize the basins and setup a changeover
in the measure of the entropy basin for a critical parameter. The
results indicate that there is a transition in the length of the basin
boundary. Additionally, based on the range of the control parame-
ter, we setup polar coordinates to describe dynamics, which seems
to be a useful metric for investigating the behavior of convergence
to the stationary state. Scaling laws were used to characterize the
entire convergence to the stationary state, where a universal plot
describes a scaling invariance through the initial conditions as well
as the control parameter, giving robustness to our description of the
dynamical scenario.

The paper is organized as follows: In Sec. II, we describe the
model, chaotic properties, and the stability criteria for the fixed
points. Section III is devoted to the numerical results considering
investigations of basin entropy, asymptotic convergence to the fixed
points, and scaling laws analysis. Finally, in Sec. IV, we present some
final remarks and conclusions.

II. THE MODEL AND ITS PROPERTIES

Duffing’s equation can describe the dynamics of some electri-
cal and mechanical systems.62 When considering a damped forced
oscillator with mass m and displacement u, assuming the restitu-
tion force as non-linear and cubic described by K(u) = k0u + k1u

3,
where k0 and k1 are the spring constants, and the viscous and lin-
ear damping is described by C(u) = cu̇, where c is the damping, the
following equation of motion is obtained:

mü + C(u) + K(u) = G(t), (1)

where G(t) is a periodic forcing force.
In this paper, we considered a Duffing-like equation to describe

the dynamics of a damped oscillator, where all the variables are
already setup as dimensionless. The displacement is now repre-
sented as x and the equation of motion is given by

ẍ + bẋ − F(x) = f(t), (2)

the damping is given by bẋ, the external periodic perturbation force
is given by f(t) = ε sin (ωt), with amplitude ε and frequency of
oscillation ω. The term F(x) is set as a piecewise linear function
given by

F(x) =







−(x + 1), if x < −1/2,
x, if − 1/2 ≤ x ≤ 1/2,
−(x − 1), if x > 1/2,

(3)

or rewriting in terms of absolute function

F(x) = −x + |x + 1/2| − |x − 1/2|. (4)

The motivation for using the piecewise linear function, instead
of the cubic potential term, lies in an application for electrical
circuits.52 Since in electronics it is difficult to setup nonlinear poten-
tial terms, an approximation by a piecewise linear function produces

FIG. 1. Behavior of (a) the piecewise linear force F(x), given by Eq. (3), and
(b) the double well parabolic potentialW(x) given by Eq. (5).

qualitatively very similar results in experimental analysis. Also, one
can find applications of piecewise linear functions in vibrational
signals,63 stabilization of driven systems,64 and chaotic attractors and
bifurcations.65

The force given in Eq. (4) gives birth to a two-well parabolic
potential as W(x) = −

∫

F(x)dx, where

W(x) =







x2/2 + x + 1/4, if x < −1/2,
−x2/2, if − 1/2 ≤ x ≤ 1/2,
x2/2 − x + 1/4. if x > 1/2.

(5)

Both behaviors of the functions F(x) and W(x) are displayed in
Fig. 1.

Let us now set the equations used in this investigation. Con-
sidering the unperturbed version of Eq. (2), i.e., ε = 0, and the
piecewise linear force, given in Eq. (4), we finally arrive at an equiv-
alent set of two first order non autonomous equations, controlled by
a single control parameter b,







ẋ = y,

ẏ = −x +

∣

∣

∣

∣

x +
1

2

∣

∣

∣

∣

−

∣

∣

∣

∣

x −
1

2

∣

∣

∣

∣

− by.
(6)

The fixed points are obtained by setting ẋ = ẏ = 0, leading to
y = 0 and |x + 1/2| − |x − 1/2| − x = 0. At the first absolute value
of the previous equation, we can set m1 = |x + 1/2|, and the second
absolute value m2 = |x − 1/2|. In the m1 term, we have (x + 1/2)
if x ≥ −1/2 and (−x − 1/2) if x < 1/2, and in the m2 term, we
obtain (x − 1/2) if x ≥ 1/2 and (−x + 1/2) if x < 1/2. After con-
sidering the intersection of both m1 and m2 absolute equations
and the proper limits according to the functions F(x) and W(x) in
Eqs. (3) and (5), it will lead us to three fixed points, P∗

1 = (x∗
1 , y∗

1)

= (0, 0), P∗
2 = (x∗

2 , y∗
2) = (−1, 0), and P∗

3 = (x∗
3 , y∗

3) = (1, 0).
Their stability is given by Det(J − λI)|(x∗,y∗) = 0, where I

denotes the identity matrix and λ are the eigenvalues of the Jacobin
matrix J given by

J =

(

0 1
F(x∗) −b

)

, (7)
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FIG. 2. Phase space of the dynamics for some values of the control parameter b. In (a), we have b = −0.1, indicating an unstable (source) orbit, in (b) we have b = 0,
where a typical rotation, libration, and separatrix of orbits appears, and finally in (c) we have b = 0.1, where the orbits are asymptotically stable and converge to the fixed
points P∗

2 and P
∗
3 .

where

F(x∗) = −1 +
x∗ + 1

2
∣

∣x∗ + 1
2

∣

∣

−
x∗ − 1

2
∣

∣x∗ − 1
2

∣

∣

=

{

−1, if |x∗| > 1/2,
1, if |x∗| < 1/2.

(8)

After a straightforward algebra, one may find the eigenvalues
of Eq. (6) as

λ1;2 =
1

2

(

−b ±
√

b2 + 4F(x∗)
)

. (9)

Analyzing these values allows us to classify the fixed point
x∗ based on the value of the control parameter b. When
|x∗| > 1/2, it is a hyperbolic saddle point, regardless of the value
of parameter b. However, for |x∗| < 1/2, the classification varies
with the values of the parameter b. For instance, in b = 0 and b = 2
(b = −2), it becomes a center and a stable (unstable) improper
node, respectively; for 0 < b < 2 (−2 < b < 0), it transforms into
a stable (unstable) spiral point; and for b > 2 (b < −2), it evolves
into a stable (unstable) node.

One may find some of the behavior of the dynamics according
to the fixed point stability in Fig. 2. In Fig. 2(a), we have b = −0.1,
the fixed point is classified as a source and the orbit is unstable, so
as the time evolves it gets apart from the fixed point. Concerning
Fig. 2(b), we have b = 0, so the fixed points P∗

2 and P∗
3 are set as ellip-

tic points and the fixed point P∗
1 is a saddle. One can see that we have

typical rotation and libration orbits, separated by a separatrix curve.
Finally, in Fig. 2(c), we display the behavior for b = 0.01, where the
orbits for both P∗

2 and P∗
3 fixed points are asymptotically stable. The

range of interest for the control parameter b, which we focus on in
this paper, is 0 < b < 1, which includes this orbit behavior.

III. NUMERICAL RESULTS

In this section, we present some numerical results regard-
ing the basins of attraction considering analysis through entropy
basin techniques. We also show the asymptotic convergence for the
fixed points, as well as the scaling arguments used to describe the
dynamics as a function of the initial conditions and the control
parameter.

A. Basins of attraction and basins entropy

Since we already know the dynamical scenario for the unper-
turbed Duffing-like oscillator as a function of the control parameter
b, let us now focus on the range of interest, which includes the
asymptotic convergence of the orbits, which is 0 < b < 1. Figure 3
displays the basin of convergence for both fixed points P∗

2 = (−1, 0)
and P∗

3 = (+1, 0). In Figs. 3(a)–3(c), the color black represents the
basin of attraction for P∗

2 , while orange (gray) denotes the basin of
attraction for P∗

3 . Each basin of Fig. 3 was constructed considering a
grid of 1000 × 1000 initial conditions displayed in the x and ẋ axes
between the limits [−5, +5] in both axes. The initial conditions were
iterated in time up to 105, considering a integration step h = 0.001,
in the fourth order Runge–Kutta numerical integrator.

One can see that as the control parameter b diminishes the
frontiers of the basins are getting more and more embedded among
each other. To characterize this behavior, we use a quantitative
measure called basin entropy,56–61 which captures the degree of
uncertainty of a basin due to the fractality of the basin boundary. To
evaluate it, we basically consider the following technique: a dynam-
ical system with a bounded phase space region � that contains NA

attractors. We set � into a mesh of NB × NB blocks of linear size
δ, where N2

B ∈ N denotes the total number of blocks. Each block
contains a large number Ns × Ns of initial conditions where Ns ∈ N,
each leading to one of the NA attractors. For each block i, we asso-
ciate a probability pij of the attractor j to exist in this block and define
the Gibbs entropy of the ith block as

Si = −

ni
∑

j=1

pij log2 pij, (10)

where ni ∈ [1, NA] is the number of different attractors inside the
ith block. The probability pij is the ratio of the number of initial
conditions with attractor j to the total number of initial conditions
in the block. In this paper, we consider a grid of NG × NG = 1000
× 1000 = 106 initial conditions (in similar way to Fig. 3) and per-
form the entropy calculation on blocks, which contains Ns × Ns

= 10 × 10 = 100 initial conditions. Thus, considering that the
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FIG. 3. The basins of attraction for the system of Eq. (6) considering (a) b = 0.01, (b) b = 0.1, and (c) b = 1. The color black represents the attracting basin for P∗
2 , and

the color orange (gray) displays the basin for P∗
3 . One can see that when the value of the control parameter b gets smaller, the basins are getting embedded with thinner and

thinner layers. Multimedia available online.

blocks are non-overlapping, the entropy of � is basically the sum
of the entropy of all blocks, as described below:

S =

N2
G

∑

i=1

Si. (11)

In order to describe the basin boundaries of the attractors, we use
the basin boundary entropy Sbb, defined as

Sbb =
S

NC

, (12)

where NC is the number of boxes that contains more than one
attractor. This observable measures the uncertainty related to the
basin boundary, following the fractality criterion.56 According to
this criterion, if Sbb > log2 2 = 1, the boundary is considered fractal.
However, it is important to note that even if the boundary is fractal,
Sbb might not always satisfy this condition.

Figure 4 illustrates the behavior of Sbb as b varies for several
values of Ns. Note that for small values of the control parameter b,
the boundary basin entropy Sbb is greater than 1. However when b
is around 0.06, Sbb exhibits a changeover, dropping below 1. This
behavior does not change even when we vary the number of boxes
considered to compute the boundary basin entropy.

To explain this, our best guess lies in the system itself. Since
the system under investigation is two-dimensional, it inherently pre-
vents the presence of the unstable chaotic sets responsible for fractal
basin boundaries.66 This suggests that the system cannot exhibit
fractal basin boundaries. Instead, the transition seems to occur in
the length of the basin boundary itself. For b = 0.01, the boundary
is significantly longer and embedded than for b = 0.1 and b = 1.0,
as illustrated in Fig. 3. We believe that the boundary basin entropy
is detecting this change in boundary length rather than a transition
to fractal behavior. In addition, the relation between each value of
Sbb and its corresponding attraction basins is illustrated in a video
attached in the multimedia files, where Ns = 10.

B. Asymptotic convergence and scaling analysis

The behavior of the basins of attraction and the changeover in
the Sbbdisplayed in Sec. III A generates an issue in our dynamical
description, i.e., if we have a small enough control parameter b, it
would be basically impossible to set, with a given precision, a proper
initial condition that converges to P∗

2 or P∗
3 .

To avoid this issue, we have set a re-scale in the system’s vari-
ables. Instead of using linear coordinates, as shown in Eq. (6), we
utilized a transformation to polar coordinates, as (x, y) → (r, φ),
given by

{

r(t) =

√

(x(t))2 + (ẋ(t))2
)

,

φ(t) = tan−1 (ẋ(t)/x(t))) ,
. (13)

where r(t) is the distance from the origin to the orbit at a given
time t and φ(t) is the angle concerning the horizontal positive semi-
axis. With this change in the variables, the new fixed points become
P∗(r∗, φ∗) = (1, 0). Such change in the variables sets a new scenario
for dynamics description.

The radial distance r(t) becomes a useful metric for investigat-
ing the behavior of convergence to the stationary state. Figure 5(a)
displays how the radial position r(t) is given, basically consider-
ing the Euclidean distance from the orbit to the origin. Indeed, in
Fig. 5(b), it is possible to see the convergence for some values of ini-
tial ratio r0 and for different values of the control parameter b. All
the decay curves exhibit similar behavior, initially characterized by
an exponential decay followed by a steady plateau at r(t) = 1 after
a significant transient. The exponential function that describes the
decay is given by

r(t) = A exp(−ξ t), (14)

where A is the constant of the exponential fit and ξ is the exponent
that indicates how fast the decay rate evolves.

One can see in Fig. 5(b) that the control parameter b influences
the crossover time of the decay rate of the orbits, i.e., for smaller val-
ues of b the decay rate starts in long times, and it starts earlier for
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FIG. 4. In (a), we have the basin entropy Sb for different ranges of Ns, indicat-
ing a changeover in its behavior according to the parameter b evolves and in
(b) we display a zoom-in window of the region depicted in (a) for the range of
b ∈ [0.035, 0.1] and SBB ∈ [0.5, 9.9], indicating that there is a critical parameter
near around bc ≈ 0.06. Multimedia available online.

higher values of b. On the other hand, the value of the initial con-
dition r0 does not influence the decay rate. It only deals with the
initial vertical orbits of plateaus. The similarity of these curves sug-
gests that the convergence is scaling invariant with respect to the
control parameter b and the initial conditions r0.

In order to investigate the scaling invariance possibility, we
extend the range of the control parameter b ∈ [0.001, 1.0] and
considered several different initial conditions r0 ∈ [102, 104] and
evolved the dynamics of r(t) for long times

(

up until t = 105
)

,
again considering a integration step h = 0.001, in the fourth
order Runge–Kutta numerical integrator, as mentioned before. In

FIG. 5. In (a), we display how the variable r(t) is set as the distance from the origin
to the orbit, until it converges to the rearranged fixed point P∗(r∗,φ∗) = (1, 0).
In (b), we have the behavior of the r(t) curves as a function of time for different
initial conditions r0 and some values of the control parameter b. The curves exhibit
an exponential decay until they reach a convergent plateau at r = 1 indicating the
convergence to the fixed point.

Fig. 6(a), one can see the behavior of the r(t) curves. The initial
conditions r0 are responsible for the initial plateaus, and the con-
trol parameter b controls the crossover time when the orbits start to
decay.

After considering an exponential fit, according to Eq. (14) in
the decay rate of all the r(t) curves, we investigate the dependence
of the exponent ξ on the control parameters. Since the initial condi-
tions r0 do not affect the crossover time, they only lead to significant
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FIG. 6. In (a), we show the radial distance r(t) as a function of time t for different values of b and r0. The decay rates of these curves are described by r ≈ exp(−ξ), where
ξ is the decay exponent. In (b), for fixed r0 = 10−2, a very good power law fitting shows that the relation between ξ and b is given by ξ(b) ∼ bβ , with β = 0.995. Finally
in (c), after a proper re-arrangement of the axes as t → t · bβ and r → r/r0, all the data overlap into a single and universal plot, thereby characterizing and confirming our
scaling arguments.

changes in the constant A. On the other hand, the behavior of the
control parameter b influences the behavior of ξ . Figure 6(b) shows
a power law fit concerning the range of the control parameter b
and the value of the exponent ξ for a constant value of the initial
condition r0 = 102. The numerical adjustment furnishes us with the
following equation:

ξ(b) = Cbβ , (15)

where C is the constant of the power law fit and β = 0.995 ≈ 1.0 is
the critical exponent.

Taking Eq. (15) into account along with the value of the expo-
nent β , we can rearrange the axes of Fig. 6(a) to validate the
proposed scaling arguments. By dividing the vertical axis r(t) by the
value of the initial conditions r0, we normalize all the initial plateaus
to the unity. Considering the time axis, we multiply each one of the
curves by bβ . One can see in Fig. 6(c) the transformations mentioned
above applied to the axis and in the r(t) curves of Fig. 6(a). Such
transformations give birth to a perfect collapse of all the decay rate
curves of r(t) into a single and universal plot. This behavior con-
firms the validity of our scaling arguments, including the change in
the variables of the system, from linear to polar ones, which sets a
useful metric for investigating the behavior of convergence to the
stationary state, also gives robustness to our results and numerical
analysis.

IV. FINAL REMARKS

In summary, we have considered a damped forced oscillator
with a linear by parts function that creates a driven potential for
the dynamics. We analyzed the dynamics of the convergence for
stationary state for a set of differential equations generated by a
Duffing-like equation. Fixed points and their associated basins of
attraction were obtained and described. We used the entropy basins
technique to set and characterize the basins of attraction, accord-
ing to the range of the control parameter. The results reveal a
changeover in the basin of attraction near a critical parameter bc,
indicating that there is a transition in the length of the basin bound-
ary. However, the characterization of this changeover as a phase
transition itself still needs further investigation.

To characterize the asymptotic convergence of the dynamics,
we employed polar coordinates according to the range of the control
parameter. Scaling laws were obtained to characterize the asymp-
totic convergence to the stationary state. A universal plot, describing
the decay curves considering a variation in the initial conditions
and the control parameter, was obtained. These results lead robust-
ness to our representation of the dynamical scenario, including the
transformation of the variables of the systems, from linear to polar
coordinates, which was setup as a new investigation scenario for
the convergence of the stationary state and also validate the scaling
analysis.

As a perspective, we intend to study the perturbation version of
the Duffing-like equation in order to analyze the stable and unstable
manifold scenarios for the basins of attraction, and check if there is
any influence on the transition of the boundary basin entropy.
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