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 A B S T R A C T

A particularly intriguing and unique feature of fractional dynamical systems is the cascade 
of bifurcations type trajectories (CBTT). We examine the CBTTs in a generalized version of 
the standard map that incorporates the Riemann–Liouville fractional derivative, known as the 
Riemann–Liouville Fractional Standard Map (RLFSM). We propose a methodology that uses two 
quantifiers based solely on the system’s time series: the Hurst exponent and the recurrence time 
entropy, for characterizing such dynamics. This approach allows us to effectively characterize 
the dynamics of the RLFSM, including regions of CBTT and chaotic behavior. Our analysis 
demonstrates that regions of CBTT are associated with trajectories that exhibit lower values 
of these quantifiers compared to strong chaotic regions, indicating weakly chaotic dynamics 
during the CBTTs.

1. Introduction

Fractional dynamical systems (FDS) are systems governed by fractional differential/difference equations (FDE), incorporating 
fractional time derivatives/differences [1–3]. FDEs are integro-differential/difference equations, and solving them requires extensive 
computational resources [4]. This complexity makes the investigation of their general properties particularly challenging. In this 
sense, the research on nonlinear fractional dynamical systems has advanced notably, with several studies [5–17]. Many of these 
investigations are based on fractional maps that describe periodically kicked systems. [18–24].

A special property of these systems is that FDS exhibit memory effects, leading to potentially unconventional properties in FDE 
solutions [25–27]: trajectories may intersect, attractors can overlap, and attractors exist only in an asymptotic sense, with their 
limiting values not necessarily belonging to their basins of attraction.

In this sense, a novel type of regime unique to FDS emerges in fractional systems, called cascade of bifurcations type trajectories 
(CBTT) [27]. In CBTT, a sequence of bifurcations occurs not due to variations in the system parameters, as in traditional dynamical 
systems, but rather along a single attracting trajectory during its temporal evolution. These bifurcations occur within specific time 
windows during which the trajectory is confined to smaller subsets of the phase space, as if temporarily trapped. The orbit enters from 
the chaotic region into a CBBT, remains there for some time, and then returns to the chaotic region, repeating this process multiple 
times. This behavior is similar to that of sticky orbits in two-dimensional, area-preserving maps. The stickiness effect [28–35], also 
known as weak chaos, is one of the main features of two-dimensional, area-preserving maps. It occurs when chaotic orbits exhibit 
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prolonged interactions with specific regions in phase space (stability islands) that temporarily ‘‘trap’’ these orbits, making them 
almost like to quasiperiodic orbits. These trappings, however, do not make a chaotic orbit a regular one. The orbit still exhibits a 
positive largest Lyapunov exponent but smaller in comparison when not trapped [36].

Various methods have been proposed to quantify the stickiness effect, including finite-time Lyapunov exponents [36–40], the 
distribution of Poincaré recurrence times [41,42], measures based on recurrence quantification analysis [43,44], weighted Birkhoff 
averages [11,12], and finite-time rotation number [13]. Recently, two methods have emerged for rapidly detecting these dynamical 
traps: the Shannon entropy of recurrence times (recurrence time entropy) [14,15] and the Hurst exponent [16].

In this paper, we introduce a methodology that uses time series analysis of the Hurst exponent and Recurrence Time Entropy 
(RTE) to provide a more refined characterization of CBTT in fractional systems. We apply this approach to a generalization of the 
standard map that incorporates the fractional derivative of Riemann–Liouville into the equations of motion. Our results show that 
regions of CBTT are associated with trajectories that exhibit lower values of these quantifiers. This method is general and can also 
be applied to Hamiltonian systems with ordinary derivatives.

The paper is organized as follows: Section 2 provides a brief overview of the Hurst Exponent and Recurrence Time Entropy (RTE), 
including the algorithms used for their calculation. Section 3 describes the Riemann–Liouville Fractional Standard Map (RLFSM) 
and discusses some properties of fractional maps. Section 4 presents the main results, illustrating how the proposed methodology 
enables the Hurst Exponent and RTE to effectively identify weak chaos regions in fractional maps characterized by CBTT. Finally, 
Section 5 offers a summary of the main findings and final remarks.

2. Methods

In this section, we outline the methodologies employed to calculate the measures used in this paper to quantify the CBTTs: the 
Hurst Exponent and the recurrence time entropy (RTE).

2.1. Hurst exponent

The Hurst exponent, introduced by H. E. Hurst in 1951 to statistically model the cyclical patterns of Nile floods [17], serve 
as a fundamental measure of long-term memory in time series. Its applicability spans various domains, including financial market 
analysis [45–48], electrocardiogram data classification for heart disease [49,50], climate temperature [51], and even experimental 
measurement in specific contexts [52].

A wide array of computational algorithms are available [53] for estimating the Hurst exponent, such as detrended fluctuation 
analysis (DFA) [54], detrended moving average (DMA) [55], and periodogram method (PM) [56], to cite a few. Among them, the 
rescaled range analysis (R/S analysis) stands out as the oldest and most renowned method [17], popularized by Mandelbrot and 
Wallis’ works [57,58].

In this approach, given a time series 𝑥⃗ = (𝑥1, 𝑥2,… , 𝑥𝑁 ) of length 𝑁 , then:

1. Divide the time series into 𝜅 subseries 𝑃𝑘,𝓁 of length 𝓁, such that the number of chunks 𝜅 satisfies 𝜅 = 𝑁∕𝓁. Each subseries 
is denoted by 𝑃𝑘,𝓁 = [𝑥(𝑘−1)𝓁+1, 𝑥𝑘𝓁] with 𝑘 = 1, 2,… , 𝜅.

2. For each subseries 𝑘 = 1, 2,… , 𝜅, calculate the mean 𝜇𝑘,𝓁 , standard deviation 𝑆𝑘,𝓁 and the deviations from the mean:
𝐷𝑖,𝑘,𝓁 = 𝑃𝑖,𝑘,𝓁 − 𝜇𝑘,𝓁

where 𝑖 denotes the elements.
3. Compute cumulative sums of deviations:

𝑍𝑖,𝑘,𝓁 =
𝑖

∑

𝑗=1
𝐷𝑗,𝑘,𝓁

for 𝑖 = 1, 2,… ,𝓁.
4. Calculate the range of the cumulative deviation 𝑅𝑘,𝓁 of each subseries 𝑍𝑖,𝑘,𝓁 .

𝑅𝑘,𝓁 = max
1<𝑖<𝓁

(

𝑍𝑖,𝑘,𝓁
)

− min
1<𝑖<𝓁

(

𝑍𝑖,𝑘,𝓁
)

,

5. Calculate the mean of the rescaled ranges:

(𝑅∕𝑆)𝓁 =
⟨𝑅𝑘,𝓁

𝑆𝑘,𝓁

⟩

𝑘
= 1

𝜅

𝜅
∑

𝑘=1

𝑅𝑘,𝓁

𝑆𝑘,𝓁
6. Repeat the process considering another value for 𝓁, that is, dividing the time series into another number of subseries.
7. Estimate the Hurst exponent 𝐻 by assuming a power-law relationship:

(𝑅∕𝑆)𝓁 = 𝐶𝓁𝐻

and using regression analysis to find 𝐻 .
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2.2. Recurrence time entropy

The recurrence plot (RP), introduced by Eckmann et al. in 1987 [59], is a graphical tool used to visualize the recurrences of a 
time series in the 𝑑-dimensional phase space of a dynamical system. For a trajectory 𝑥⃗𝑖 ∈ R𝑑 (𝑖 = 1, 2,… , 𝑁) of length 𝑁 , the 𝑁 ×𝑁
recurrence matrix is defined as 

𝑅𝑖𝑗 = 𝐻
(

𝜖 − ‖𝑥⃗𝑖 − 𝑥⃗𝑗‖
)

, (1)

where 𝑖, 𝑗 = 1, 2,… , 𝑁 , 𝐻(⋅) is the Heaviside unit step function, 𝜖 is a threshold, and ‖𝑥⃗𝑖 − 𝑥⃗𝑗‖ denotes the spatial distance between 
two states, ⃗𝑥𝑖 and ⃗𝑥𝑗 , in phase space, measured using an appropriate norm, which in this work is taken to be the 𝐿∞-norm (maximum 
norm). Although the 𝐿2-norm (Euclidean norm) yields similar RP [60], for a fixed threshold 𝜖 the maximum norm finds the most 
recurrent points and it is computationally faster. Hence we prefer the maximum norm. Essentially, recurrence refers to a trajectory 
returning near a previously visited state, as illustrated in Fig.  1.

Fig. 1. A diagram illustrating the recurrence analysis, in which each point in the recurrence plot (RP) corresponds to a segment of the trajectory 
that remains within an 𝜖-neighborhood of another segment.

The recurrence matrix 𝐑 is a symmetric, binary matrix where recurrent states are represented by a value of 1 and non-recurrent 
states by a value of 0. Two states are considered recurrent if they are ‘‘close’’ to each other within a distance 𝜖, meaning 𝑥⃗𝑖 ≈ 𝑥⃗𝑗 . 
Therefore, the choice of 𝜖 is crucial and not arbitrary. If 𝜖 is too large, nearly every point will be recurrent with every other point. 
Conversely, if 𝜖 is too small, there will be almost no recurrent states. Several methods for selecting 𝜖 have been proposed. Some 
methods fix 𝜖 based on a desired recurrence point density in the RP [61], while others use 𝜖 as a fraction of the standard deviation 
𝜎 of the time series [60,62,63]. In this study, we set the threshold to 10% of the time series standard deviation, which has been 
proven effective for detecting stickiness in two-dimensional area-preserving maps [14,15].

Graphically, RP is a visualization of the recurrence matrix, where each recurrent state (a pair (𝑖, 𝑗) such that 𝑅𝑖𝑗 = 1) is shown as 
a colored dot. This visual representation reveals different patterns depending on the trajectory’s evolution, which is determined by 
its initial conditions. In Fig.  2, we present examples of distinct RP patterns. Periodic motion produces long, uninterrupted diagonal 
lines, regularly spaced by a distance 𝑑, as shown in Fig.  2(a). The vertical distance between these lines corresponds to the recurrence 
time, meaning that for periodic dynamics, 𝑑 represents the oscillation period. Quasiperiodic motion, illustrated in Fig.  2(b), also 
produces mainly uninterrupted diagonal lines, but unlike the periodic case, the spacing between the diagonals varies (denoted by 
𝑑0, 𝑑1 and 𝑑2), indicating the presence of multiple return times. Finally, Fig.  2(c) shows the RP of a chaotic trajectory, which exhibits 
disrupted and irregular line structures. The varying distances between diagonals reflect the multiple time scales in the system, while 
the broken lines result from the exponential divergence of nearby trajectories [64].

Fig. 2. RPs of four three cases: (a) periodic, (b) quasiperiodic, and (c) chaotic. The purple line with double arrows in (a) and (b) denote the 
white vertical lines.
3 
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Several measures have been proposed to characterize and quantify the structures in RPs. Some of them include the recurrence 
rate, the determinism, and the laminarity, to cite a few. We refer the reader to Refs. [60,65–67] for a complete discussion on 
these and other measures. Entropy-based measures have also been employed to quantify RPs that allow the identification of chaotic 
regimes and bifurcation points [68–71]. One particular entropy-based measure relies on the estimation of the recurrence times of a 
trajectory using its corresponding RP. The vertical distance between the diagonal lines (white vertical lines), i.e., the gaps between 
them, are an estimate of the trajectory recurrence times [64,69,72,73]. Recently, it has been verified that the Shanon entropy of 
the distribution of white vertical lines, i.e., the recurrence time entropy (𝑆RT), can be used to detect weak chaos in two-dimensional 
area-preserving maps [14,15]. It has also been reported that 𝑆RT can detect dynamical transitions on FDS [74].

The 𝑆RT as a tool for dynamical characterization was originally introduced with no connections to RPs [75] and it provides 
a good estimate for the Kolmogorov–Sinai entropy [69], for instance. We, on the other hand, consider the RP of a trajectory to 
estimate the recurrence times and define 𝑆RT as [75,76] 

𝑆RT = −
𝑣max
∑

𝑣=𝑣min

𝑝(𝑣) ln 𝑝(𝑣), (2)

where 𝑣max and 𝑣min denote the length of the longest and shortest white vertical lines, respectively. The term 𝑝(𝑣) = 𝑃 (𝑣)∕𝑁w
represents the relative distribution of white vertical line segments with length 𝑣, where 𝑁w is the total number of white vertical 
line segments and 𝑃 (𝑣) is the number of white vertical line segments with length 𝑣 and is given by 

𝑃 (𝑣) =
𝑁
∑

𝑖,𝑗=1
𝑅𝑖,𝑗−1𝑅𝑖,𝑗+𝑣

𝑣−1
∏

𝑘=0
(1 − 𝑅𝑖,𝑗+𝑘). (3)

For the purposes of this study, we set 𝑣min = 1. It is important to carefully evaluate the distribution of white vertical lines 
[Eq. (3)], as it might be biased by the border lines, i.e., the lines that begin and end at the border of the RP. The length of these 
lines might not represent the line’s true length due to the finite size of the RP, thus influencing the distribution of white vertical 
lines and consequently, the 𝑆RT [77]. Therefore, to avoid such border effects, we exclude from the distribution the border lines.

3. The Riemann–Liouville fractional standard map

The standard map, also known as the Chirikov-Taylor map or the kicked rotator map, is a two-dimensional, area-preserving 
map and is a paradigmatic model for investigating the dynamics and essential properties of Hamiltonian systems. Introduced 
independently by Bryan Taylor [78] and Boris Chirikov [79], this area-preserving map is described by the following equations: 

𝑝𝑛+1 = 𝑝𝑛 −𝐾 sin 𝑥𝑛,
𝑥𝑛+1 = 𝑥𝑛 + 𝑝𝑛+1 mod 2𝜋,

(4)

where 𝑥𝑛 and 𝑝𝑛 are the canonical position and momentum, respectively, at discrete times 𝑛 = 1, 2,… , 𝑁 , and 𝐾 controls the 
nonlinearity of the map. This map illustrates the Poincaré surface of section for the dynamics of a simple mechanical system known 
as the kicked rotator. In this system, 𝑥𝑛 and 𝑝𝑛 represent the angular position and angular momentum, respectively, of the rotator, 
and 𝐾 measures the intensity of the periodic kicks applied to the rotator [80,81]. The differential equation governing the system is 
given by: 

𝑥̈ +𝐾 sin(𝑥)
∞
∑

𝑛=0
𝛿
( 𝑡
𝑇

− 𝑛
)

= 0, (5)

and the map given by Eq. (4) is derived considering the position and momentum just after the 𝑛th kick.
Note that in the standard map, the next iteration depends solely on the current state, limiting its ability to model systems with a 

strong dependence on past states. To overcome this limitation, fractional differential equations (FDEs) [82,83] have been employed. 
These equations generalize the conventional differential equation framework by incorporating fractional derivatives, which account 
for memory effects and non-local interactions [84–87]. This approach enables the modeling of complex systems with historical 
dependencies. FDEs have been applied across various scientific fields, including biology [88,89], electrodynamics [90–94], and 
quantum mechanics [95–98].

Thus, to obtain a fractional equation of motion for the kicked rotator, we replace the second-order time derivative in Eq. (5) 
with the Riemann–Liouville derivative 0𝐷𝛼

𝑡  [82,83], obtaining the following equation: 

0𝐷
𝛼
𝑡 𝑥 +𝐾 sin(𝑥)

∞
∑

𝑛=0
𝛿
( 𝑡
𝑇

− 𝑛
)

= 0, (6)

where 

0𝐷
𝛼
𝑡 𝑥(𝑡) =

1
𝛤 (2 − 𝛼)

d2

d𝑡2 ∫

𝑡

0

𝑥(𝜏)
(𝑡 − 𝜏)𝛼−1

d𝜏. (7)

By integrating Eq. (6) with 𝛼 ∈ (1, 2], the Riemann–Liouville fractional standard map (RLFSM) can be written as [99,100] 
𝑝𝑛+1 = 𝑝𝑛 −𝐾 sin 𝑥𝑛

𝑥𝑛+1 =
1

𝑛
∑

𝑝𝑖+1𝑉𝛼(𝑛 − 𝑖 + 1) mod 2𝜋,
(8)
𝛤 (𝛼) 𝑖=0

4 
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where 

𝑉𝛼(𝑚) = 𝑚𝛼−1 − (𝑚 − 1)𝛼−1. (9)

In the limiting case 𝛼 = 2, the RLFSM coincides with the equations for the standard map under the condition 𝑥0 = 0. Fig.  3 
shows the parameter space of the RLFSM for 𝐾 × 𝑝 on a grid of 1000 × 1000 points with 𝑥0 = 0 and 𝛼 = 2. Each initial condition is 
iterated 𝑁 = 103 times, and we calculate the Hurst exponent and recurrence time entropy for each point in the grid. This diagram is 
known as conservative generalized bifurcation diagram (CGBD) [101,102] and is the conservative, i.e., area-preserving, counterpart 
of traditional bifurcation diagrams of dissipative systems. The CGBD reveals the transitions from regular to chaotic behavior as well 
as bifurcations as 𝐾 varies. Fig.  3 highlights the similarities between the two observables presented in this paper. Low values of 𝐻
and 𝑆RT indicate regular (periodic or quasiperiodic) behavior whereas chaotic dynamics is characterized by high values of 𝐻 and 
𝑆RT.

Fig. 3. (Left) The recurrence time entropy, 𝑆RT, and (right) the Hurst Exponent, 𝐻 , for the RLFSM [Eq. (8)], for a 1000 × 1000 grid of uniformly 
distributed points in the parameter space (𝐾, 𝑝) ∈ [0, 5] × [−𝜋, 𝜋], with 𝑥0 = 0 and 𝛼 = 2. Each point on the grid was iterated for 𝑁 = 1000 times.

To investigate the influence of 𝛼 on the RLFSM, we perform the phase space analysis of the RLFSM for several values of 𝛼 and 
𝐾 (Fig.  4). For 𝛼 = 2 and 𝐾 = 2 [Fig.  4(a)], the phase space is the typical standard map phase space, naturally. The central stability 
island is surrounded by smaller islands and all of the regular structures are embedded in the chaotic sea. For values of 𝛼 close, but 
different, to 2 [Figs.  4(b) and 4(c)], the effect of the parameter 𝛼 is analogous to a small damping in the standard map [103]: the 
centers of the islands become attracting periodic orbits. However, for smaller values of 𝛼, such as 𝛼 = 1.65 [Figs.  4(d)-4(f)], we 
observe completely different behaviors for different 𝐾. Edelman and coauthors [25–27,104] have demonstrated that the RLFSM can 
generate attracting asymptotically periodic orbits [Figs.  4(b) and 4(c)], attracting slow-diverging trajectories, attracting accelerator 
mode trajectories, and chaotic attractors. They have also shown that the RLFSM exhibits a characteristic type of trajectory, known 
as cascade of bifurcations type trajectories (CBTTs) [Fig.  4(e)].

The CBTT is a characteristic type of regime that, to the best of our knowledge, exists exclusively in fractional dynamical systems. 
They consist of a sequence of bifurcations in the orbit evolution, which occur not due to variations in system parameters as in 
conventional dissipative dynamical systems, but rather along a single attracting trajectory during its temporal evolution. In Fig.  5, 
we observe an example of intermittent CBTT by evaluating the initial condition (𝑥0, 𝑝0) = (0.0, 0.3) over 105 iterations considering 
𝛼 = 1.65 and 𝐾 = 4.5. This special type of trajectory behaves similarly to a typical chaotic trajectory in a two-dimensional, area-
preserving map. Such a trajectory occasionally becomes trapped in a specific region of phase space in which it becomes ‘‘less’’ chaotic,
i.e., its largest Lyapunov exponent [36] and its corresponding Hurst exponent [16] and recurrence time entropy [14,15] decreases, 
for example. Hence the term ‘‘weak chaos’’ is used as a reference to the stickiness effect. Therefore, a similar intermittent behavior 
to the one observed in typical chaotic trajectories in two-dimensional, area-preserving maps is observed in fractional dynamical 
systems, such as the RLFSM. In our case, however, the trappings occur for specific time intervals where the portion of phase space 
occupied by the orbit is significantly smaller.

In the next section, we aim to use measures used in the characterization of stickiness, such as the recurrence time entropy and 
the Hurst exponent, to characterize the dynamics of an orbit that follows a CBTT.
5 
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Fig. 4. Phase space of the RLFSM for the first 5000 interaction of 20 initial conditions, uniformly distributed points along 𝑥 = 0 and 𝑝 ∈ [−𝜋, 𝜋], 
with fixed 𝐾 = 2 for (a) 𝛼 = 2, (b) 𝛼 = 1.999, and (c) 𝛼 = 1.9; and with fixed 𝛼 = 1.65 for (d) 𝐾 = 7, (e) 𝐾 = 4.5, and (f) 𝐾 = 4.

Fig. 5. (a) The FSMRL’s phase space for 𝐾 = 4.5 and 𝛼 = 1.65 considering 105 iterations on a single trajectory with (𝑥0, 𝑝0) = (0, 0.3). (b) A 
magnification of one of the CBTT of (a), indicated by the red rectangle.

4. CBTT and weak chaos

A dynamical trap is a region in phase space where an orbit can spend arbitrarily finite long periods behaving not equal but 
similar to a quasiperiodic orbit even though the overall behavior remains chaotic [105]. This leads to the phenomenon of stickiness 
which is typically characterized using the Lyapunov exponents [36,37,39]. However, in order to calculate the Lyapunov of fractional 
order systems, it is necessary to extend the definition of the Jacobian matrix to include fractional derivatives and include memory 
effects in the calculation of the Lyapunov exponents [106,107]. Recently, several other methods have been proposed to detect sticky 
orbits such as the use of the entropy of recurrence times (recurrence time entropy) [14,15] and the Hurst exponent [16]. Both of 
these methods relies only on the system’s time series, which makes them great tools to study fractional dynamical systems.

A commonly used technique in these methods is finite-time analysis, which provides precise detection of transitions between 
different dynamical regimes in the orbit. This approach starts by selecting an initial condition (𝑥0, 𝑝0) and evolving it iteratively 
to generate a time series of length 𝑁 . The time series is then divided into windows of size 𝑇 , where the measure of interest is 
calculated for each one of these windows.
6 
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We perform such an analysis to quantify CBTTs along a single trajectory of the RLFSM [Eq. (8)] considering the time series of 
the 𝑥 variable. We consider an orbit with initial condition (𝑥0, 𝑝0) = (0, 0.3) and length 𝑁 = 105 [as in Fig.  5] and the time series 
of the 𝑥 variable is shown in Fig.  6(a). We divide the time series 𝑋 = (𝑥1,… , 𝑥𝑁 ) into 𝑀 = 212 partitions. For the 𝑖th window 
(1 < 𝑖 < 𝑁), the first and last elements correspond to 𝑖𝑇  and (𝑖 + 1)𝑇  of the time series 𝑋. The midpoint of each window, given by 

𝑛(𝑖)mid =
(𝑖 + 1)𝑇 + 𝑖𝑇

2
=
(

𝑖 + 1
2

)

𝑇 , (10)

is associated with the respective quantifier which in our case can be either the Hurst exponent or the recurrence time entropy. This 
analysis is then extended to all partitions. The Hurst exponent and the recurrence time entropy for each partition as a function of 
the midpoint element 𝑛mid are shown in Figs.  6(b) and 6(c), respectively. The intermittent behavior of an orbit that follows CBTTs 
is more evident when analyzing the time series of the 𝑥 variable, for example [Fig.  6(a)]. The orbit abruptly changes its behavior 
as it evolves in time going from a strong chaotic motion, i.e., the orbit fills the whole 𝑥 domain, to a seemingly periodic dynamics 
and to a weaker chaotic motion where the orbit occupies a smaller region, becoming strongly chaotic again. The transition from 
periodic to weakly chaotic dynamics resembles the period-doubling route to chaos observed in typical dissipative systems, such as 
the logistic map, for example.

Fig. 6. (a) The time series of the variable 𝑥 for the trajectory shown in Fig.  5. (b) The Hurst exponent and (c) the recurrence time entropy as a 
function of the midpoint of each window.

During the chaotic regime, both the Hurst exponent [Fig.  6(b)] and the recurrence time entropy [Fig.  6(c)] have high values. 
In contrast, as the orbit changes its behavior, both quantifiers exhibit sharp drops to zero, indicating periodic dynamics. After the 
‘‘period-doubling’’ regime, the orbit reaches the weakly chaotic regime, in which the quantifiers exhibit higher values than the 
periodic dynamics but smaller than the strong chaotic regime. Therefore, both quantifiers detect the intermittent behavior and 
indicate a weak chaos-like regime that corresponds to the time intervals where the orbit occupies a significantly smaller region in 
𝑥 than it is in the strong chaotic regime.
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Since the value of each quantifier in finite-time analysis depends on the number of divisions of the time series, it is important 
to understand how different time window sizes influence the results. To address this, Figs.  7(a), (c), and (e) show the Finite-Time 
Hurst Exponent (FTHE) for time windows of sizes 28, 210, and 212, respectively. Figs.  7(b), (d), and (f) present the Finite-Time 
Recurrence Time Entropy (FTRTE) for the same window sizes as in Figs.  7(a), (c), and (e). Our findings indicate that the ability to 
distinguish between chaotic and CBTT regimes remains consistent across different window sizes. However, as 𝑀 increases (resulting 
in smaller window sizes), the noise level also increases because the quantifiers present a certain level of uncertainty when applied 
to smaller datasets. Nevertheless, the Hurst exponent and the recurrence time entropy, valuable metrics for evaluating weak chaos 
in area-preserving dynamical systems, provide a reliable statistical measure of the CBTT effect.

Fig. 7. The finite-time Hurst exponent (left column) and the finite-time recurrence time entropy (right column) for time windows of sizes (a) 
and (b) 28, (c) and (d) 210, and (e) and (f) 212.

To identify where the trappings occur in phase space, we perform the previously described finite-time analysis and we plot each 
point with a color scale according to the quantifier value for the corresponding time window (Fig.  8). Black color, in our color scale, 
corresponds to the periodic dynamics and yellow to white corresponds to chaotic dynamics. Weak chaotic dynamics, i.e., the CBTT 
regime, on the other hand, is indicated by red to purple. During the CBTT regime, the values (and colors) of the quantifiers are 
clearly different from the large chaotic regions. Therefore, this analysis reveals the cascading effects and provides a detailed and 
visual characterization of these regions.

In dynamical systems exhibiting the stickiness effect, transitions from fully chaotic motion to various levels within the hierarchical 
structure of islands-around-islands lead to finite-time distributions of the Hurst exponent and recurrence time entropy [14,16], each 
displaying multiple peaks. Fig.  9 shows the probability distributions of these observables for the RLFSM, revealing that fractional 
dynamics also exhibit multiple peaks. To compute these distributions, we perform a finite-time analysis of 𝐻 and 𝑆𝑅𝑇  along the 
evolution of 103 chaotic orbits of length 𝑁 = 105, with initial conditions set on the line 𝑥 = 0 and 𝑝 ∈ (−𝜋, 𝜋). We considered 𝑀 = 212
partitions in the 𝑥-coordinate. Using the values of 𝐻𝑀  and 𝑆𝑅𝑇𝑀 , we construct the probability distributions of the finite-time Hurst 
exponent, 𝑃 (𝐻𝑀 ), and the finite-time Recurrence Time Entropy, 𝑃 (𝑆𝑅𝑇𝑀 ), by computing frequency histograms of 𝐻𝑀  and 𝑆𝑅𝑇𝑀 , 
respectively.

The Hurst distribution 𝑃 (𝐻28 ) [Fig.  9(a)] exhibits three main peaks. When the orbit is in the chaotic region, the distribution 
tends to the peak located at higher values of 𝐻28 . In contrast, when the trajectory remains in the CBBT regime, a second and 
intermediate peak appears at lower values. Finally, when the dynamics reach periodic behavior, the Hurst exponent assumes values 
corresponding to the highest peak, which appears even closer to zero. Similarly, the recurrence time entropy distribution 𝑃 (𝑆𝑅𝑇 28

)
[Fig.  9(b)] follows a similar general pattern to that of the Hurst distribution. However, its primary peak is sharper, and the second 
peak consists of three smaller sub-peaks, which may indicate different hierarchical levels within the CBBT structure.
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Fig. 8. (a) The single trajectory shown in Fig.  5 and (b) The Finite-Time Hurst Exponent (FTHE) and (c) Finite-Time Recurrence Time Entropy 
(FTRTE) for the same trajectory. Each point is colored according to the quantifier value for the time window in which its coordinate 𝑥 is 
categorized.

Fig. 9. Probability distributions of (a) the finite-time Hurst exponent and (b) the finite-time Recurrence Time Entropy, computed with 𝑀 = 212

partitions on the coordinate 𝑥 of 103 chaotic orbits of length 𝑁 = 105, with initial conditions set on the line 𝑥 = 0 and 𝑝 ∈ (−𝜋, 𝜋) for the FSMRL 
with 𝐾 = 4.5 and 𝛼 = 1.65. Both distributions exhibit multiple peaks, reflecting transitions between chaotic, CBBT, and periodic regimes.

5. Conclusions

In summary, we have proposed two methods to characterize the dynamics of a fractional system based on its time series, namely, 
the finite-time Hurst exponents and finite-time recurrence time entropy. Using this methodology, we have shown that due to the 
similarity between a typical sticky orbit in area-preserving maps and an orbit of a fractional dynamical system, the characterization 
of CBTTs can be done using the same quantifiers, such as the Hurst exponent and the recurrence time entropy.

Several approaches have been explored in previous studies to detect sticky orbits. However, these methods are not applicable 
when dealing with fractional maps due to their strong dependence on past states. In this context, the finite-time analysis of the 
RLFSM using the Hurst exponent and the recurrence time entropy emerges as a powerful alternative for quantifying the CBTT 
phenomenon since they depend exclusively on the system’s time series.
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By examining these quantifiers across different time window sizes, we have consistently distinguished between chaotic, periodic, 
and CBTT regimes, despite the increased noise associated with smaller window sizes. We have shown that chaotic regimes are 
characterized by higher values of these quantifiers, whereas, for periodic regimes, these quantifiers display small values. The CBTTs 
regions, on the other hand, display higher values than the periodic regimes but smaller than the chaotic regimes. Therefore, these 
quantifiers effectively capture the dynamics during the CBTTs regimes, indicating weakly chaotic dynamics during such regimes 
and enhancing our understanding of the CBTT effect.

The probability distributions of the quantifiers also describe the fractional dynamic. The presence of multiple peaks reflects 
transitions between chaotic, CBBT, and periodic regimes, providing a characterization of weak chaos in the system. In particular, 
the structure with three sub-peaks in the intermediate region observed in the recurrence time entropy distribution suggests that 
recurrence-based measures can distinguish different hierarchical levels within the CBBT regime.
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