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 A B S T R A C T

Since Lorenz’s seminal work on a simplified weather model, the numerical analysis of nonlinear 
dynamical systems has become one of the main subjects of research in physics. Despite 
of that, there remains a need for accessible, efficient, and easy-to-use computational tools 
to study such systems. In this paper, we introduce pynamicalsys, a simple yet powerful 
open-source Python module for the analysis of nonlinear dynamical systems. In particular, 
pynamicalsys implements tools for trajectory simulation, bifurcation diagrams, Lyapunov 
exponents and several others chaotic indicators, period orbit detection and their manifolds, as 
well as escape and basins analysis. We demonstrate the capabilities of pynamicalsys through 
a series of examples that reproduces well-known results in the literature while developing the 
mathematical analysis at the same time. We also provide the Jupyter notebook containing all the 
code used in this paper, including performance benchmarks. pynamicalsys is freely available 
via the Python Package Index (PyPI) and is intended to support both research and teaching in 
nonlinear dynamics.

1. Introduction

The success of Newton’s theory on mechanics led to the idea of a deterministic, and fully predictable Universe. Laplace once 
famously stated that if an intellect at a certain moment in time would know all the forces that set nature in motion, and all the 
positions of all objects, then this intellect would be able to predict the past and the future of the entire Universe [1]. This idea 
was later challenged by Poincaré in his seminal work on the stability of the solar system [2]. Poincaré, to simplify the problem, 
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considered the gravitation interaction of only three objects, and demonstrated that the system is generally non-integrable. In other 
words, for an arbitrary initial condition, its motion cannot be described by a finite set of integrals of motion. Only a particular set 
of initial conditions results in exact solutions. He also discovered homoclinic points and homoclinic tangles, which make the motion 
sensitive to initial conditions and exhibit unpredictable behavior.

This was the first evidence of the deterministic chaos, or simply chaos, that we know today. Poincaré, however, could not 
visualize the behavior he was describing. There were no computers at the time and his work remained underappreciated for around 
70 years. In 1963, Lorenz when working on a simplified weather model, accidentally discovered that small changes in the initial 
conditions can lead to considerably different future states [3]. He considered a system of three differential equations and showed 
for the very first time a strange attractor: a geometric structure in phase space that is deterministic, i.e., follows a set of rules (the 
differential equations) yet is aperiodic and highly sensitive to small changes in the initial conditions.

After Lorenz’s discovery, the mathematical foundations of dynamical systems theory were revitalized. Smale [4,5] introduced the 
concept of the horseshoe map, illustrating how repeated stretching and folding of phase space can lead to unpredictable behavior. 
Around the same time, the foundation of ergodic theory was also developed [6,7] and the term ‘‘chaos’’ started to become popular in 
the scientific community. The rapid development of computers and different programming languages, such as Pascal, Assembly, C, 
and Fortran, popular among the scientific community at the time, made large-scale numerical simulations feasible. In this context, 
the seminal work of Li and Yorke [8] formalized the modern notion of chaos by showing that a system with a period-3 orbit must 
exhibit chaotic dynamics. Feigenbaum also contributed to this when he discovered a universal law in period-doubling bifurcation, 
today known as Feigenbaum constant, that shows that different systems can exhibit the same route to chaotic dynamics [9,10].

Since then, and continuing to the present day, chaos theory has become a cornerstone of nonlinear science, with profound 
interdisciplinary influence. In physics, areas such as plasma physics [11–14], fluid turbulence [15,16], and astrophysical systems [17] 
rely heavily on chaotic models to describe their complex behavior. However, the reach of chaos theory extends far beyond 
physics. In biology, it plays a critical role in understanding heart rhythms [18–20], ecological models [21,22], and neuronal 
activity [23–26]. The latter has become a major focus of current research. Chaotic models have also influenced the economics field 
by modeling complex market behavior and financial instabilities [27–31], while in computer science, it has influenced fields like 
cryptography [32–34] and random number generation [35,36]. More recently, chaos theory has also found applications in the study 
of memristive systems, where nonlinear dynamics and memory effects give rise to complex and potentially chaotic behavior [37,38]. 
Additionally, machine learning techniques have become increasingly relevant in the study of dynamical systems [39], enabling 
prediction [40], classification [41,42], and parameter inference of nonlinear dynamical systems [43,44].

Therefore, in this paper, we present the pynamicalsys module, a simple yet powerful, open-source Python package imple-
menting several tools for the analysis of nonlinear dynamical systems. Despite being written purely in Python, pynamicalsys 
offers high-performance thanks to Numba1 [45] accelerated computation, offering speedups up to 130x compared to the pure 
Python version of the corresponding functions. We choose Python for its simplicity and extensive use within the scientific and 
programming communities, as it is currently one of the most, if not the most, widely used programming languages. All computations 
in pynamicalsys are performed using IEEE-754 double precision (float64), which provides approximately 15–16 decimal digits 
of precision. This corresponds to defining variables as real(kind=8) in Fortran or double in C. While floating-point arithmetic 
is inherently approximate, key results were verified to be robust against changes in time step and precision, ensuring that they are 
not dominated by numerical noise. You can install pynamicalsys using the Python Package Index (PyPI) via
1 $ pip install pynamicalsys

The package requires Python 3.8 or later and should run on any modern operating system with a standard Python environment 
and all required dependencies are installed automatically with the package.

We present the pynamicalsys classes and methods and illustrate their usage together with the theoretical discussion of the 
methods. We use pynamicalsys to reproduce several known results in the literature. This paper is accompanied by two Jupyter 
notebooks (see the Supplementary Material), which contains all the code needed to reproduce the results presented in this paper. The 
first notebook, paper.ipynb shows the CPU time for each calculation shown in this paper and the second notebook benchmarks.ipynb, 
contains all the benchmarks shown in the Appendix  A confirming the high efficiency of pynamicalsys. These benchmarks were 
obtained on a MacBook Air equipped with an Apple M4 chip, featuring a 10-core CPU. In this paper, we only provide examples on 
how to obtain the data. For the plotting settings, we refer the reader to the Supplementary Material and the documentation page 
(https://pynamicalsys.readthedocs.io/en/latest/).

This paper is organized as follows. In Section 2, we demonstrate the basic use of the DiscreteDynamicalSystem class 
and perform some basic simulations such as trajectory and bifurcation diagram computation. In Section 3, we review some of 
the most used and efficient chaotic indicators for discrete dynamical systems and demonstrate their use by reproducing some 
known results in the literature. In Section 4, we focus on finding and classifying periodic orbits of two-dimensional maps and 
determining the stable and unstable manifolds of the saddles. Section 5 is devoted to the escape analysis, such as the computation and 
quantification of escape basins (or attraction basins). In Section 6, we demonstrate the use of the ContinuousDynamicalSystem 
and HamiltonianSystem classes and Section 7 contains our final remarks.

1 https://numba.pydata.org.
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Fig. 1. Demonstration of the use of the trajectory method from the DiscreteDynamicalSystem class of pynamicalsys for the 
model="standard␣map", with parameters 𝑘 = 1.5 and total_time = 100000, for (a) a single initial condition and (b) 200 initial conditions. 
Execution times: (a) 48.9ms and (b) 429ms.

2. Basic system definition and simulation

We begin by presenting a few basic simulations on how to generate trajectories and phase space. We use the Chirikov–Taylor 
standard map [11], defined as 

𝑦𝑛+1 = 𝑦𝑛 +
𝑘
2𝜋

sin
(

2𝜋𝑥𝑛
)

mod 1,

𝑥𝑛+1 = 𝑥𝑛 + 𝑦𝑛+1 mod 1.
(1)

The Chirikov–Taylor standard map is a two-dimensional, area-preserving map where 𝑥𝑛 and 𝑦𝑛 are the conjugated canonical 
variables, 𝑛 = 0, 1, 2…, is the discrete time, and 𝑘 ≥ 0 is the nonlinearity parameter. For 𝑘 = 0, the system is integrable and 
all orbits lie on period and quasiperiodic invariant tori. For 𝑘 > 0, the sufficient irrational tori survive the perturbation, as predicted 
by the Kolmogorov–Arnold–Moser (KAM) theorem [46] and the rational ones are destroyed, leaving behind a set of elliptic (center) 
and hyperbolic (saddle) periodic orbits (Poincaré–Birkhoff theorem [46]). The stability islands are formed around the elliptic orbits 
and the stable and unstable manifolds of the hyperbolic orbits intersect each other in infinitely many points, generating chaotic 
dynamics. We refer the reader to Refs. [11,46–50] for further details on the dynamics of the standard map.

Let us then create our dynamical system object using the DiscreteDynamicalSystem class. To import the class, we proceed 
as follows:

1 >>> from pynamicalsys import DiscreteDynamicalSystem as dds

The pynamicalsys class takes on six arguments: model, mapping, jacobian, backwards_mapping, system_dimension, 
and number_of_parameters. You should either inform model or the remaining five arguments. The DiscreteDynamicalSystem 
class comes with a few built-in systems and the standard map is one of them. To check all the built-in systems, run

1 >>> dds.available_models ()
2 [’standard map’, ’unbounded standard map’, ’henon map’, ’lozi map’, ’rulkov map’, ’logistic map’, ’standard

nontwist map’, ’extended standard nontwist map’, ’leonel map’, ’4d symplectic map’]

Thus, to create an object of the standard map system, you proceed as

1 >>> ds = dds(model="standard map")

Now all methods of the DiscreteDynamicalSystem class are accessible via the ds object. To generate the trajectories, we use 
the trajectory method:
3 
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1 obj.trajectory(u, total_time , parameters=None , transient_time=None)

It takes on four arguments: u, the initial condition, total_time defines the total iteration time, parameters is a list of the 
system parameters, which can be left empty if the system has no parameters, and transient_time corresponds to the discarded 
initial iterations (default is None). The initial condition can be an one-dimensional array, corresponding to a single initial condition 
[Fig.  1(a)]:

1 >>> import numpy as np
2 >>> u = np.array ([0.05, 0.05]) # Initial condition
3 >>> k = 1.5 # Parameter of the map
4 >>> total_time = 1000000 # Total iteration time
5 >>> trajectory = ds.trajectory(u, total_time, parameters=k)
6 >>> trajectory.shape
7 (1000000, 2)

In this case, the trajectory() method returns a two-dimensional array with total_time rows (the state at each time step) 
and 2 columns (the 𝑥 and 𝑦 coordinates). The initial condition u can also be a two-dimensional array of shape (𝑀, 2), where 𝑀 is 
the number of initial conditions and 2 corresponds to the dimension of the system [Fig.  1(b)]:

1 >>> num_ic = 200 # Number of initial conditions
2 >>> np.random.seed (13) # For reproducibility
3 >>> u = np.random.rand(num_ic, 2) # Random initial conditions
4 >>> k = 1.5 # Parameter of the map
5 >>> total_time = 100000 # Total iteration time for each initial condition
6 >>> trajectories = ds.trajectory(u, total_time, parameters=k)
7 >>> trajectories.shape
8 (20000000, 2)

Now, the trajectory method returns a two-dimensional array with total_time×num_ic rows, i.e., it concatenates each 
trajectory and returns the trajectory of all initial conditions. Fig.  1(a) and (b) present complementary and key features of the standard 
map. In case (a), a single chaotic initial condition was used. This illustrates the chaotic sea, the boundaries of multiple islands that 
act as barriers in phase space (represented by the white areas), and, finally, the stickiness around the central islands, evidenced 
by the concentration of points indicating that the trajectory becomes temporarily trapped for long but finite times [47,51,52]. On 
the other hand, case (b) demonstrates how easily pynamicalsys can be adjusted to run multiple initial conditions. Each initial 
condition is marked with a distinct color, clearly distinguishing the regular regions, represented by islands, from the chaotic sea 
that fills the phase space.

Let us now consider a two-dimensional, dissipative map: the Hénon map [53]. The map is defined as 
𝑥𝑛+1 = 1 − 𝑎𝑥2𝑛 + 𝑦𝑛,

𝑦𝑛+1 = 𝑏𝑥𝑛,
(2)

where 𝑎 and 𝑏 are the parameters of the system. This system is built-in within the DiscreteDynamicalSystem class as well. 
To initialize it we simply define the dynamical system object with model="henon␣map". In this case, we are dealing with two 
parameters instead of one, and the order in which they are passed to the methods matters. To obtain this information from the 
built-in systems, you proceed as follows:

1 >>> from pynamicalsys import DiscreteDynamicalSystem as dds
2 >>> ds = dds(model="henon map")
3 >>> info = ds.info
4 >>> info["parameters"]
5 [’a’, ’b’]

The info property returns a dictionary with several information regarding the built-in system. For all the available information, 
check the documentation. Thus, from the previous example, we see that for the built-in Hénon map, the first parameter is 𝑎 and the 
second is 𝑏. Now, let us generate the chaotic Hénon attractor for the parameters 𝑎 = 1.4 and 𝑏 = 0.3 [Fig.  2(a)]:

1 >>> from pynamicalsys import DiscreteDynamicalSystem as dds
2 >>> ds = dds(model="henon map")
3 >>> u = [0.1, 0.1] # Initial condition
4 >>> a, b = 1.4, 0.3 # Parameters for the Henon map
4 
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Fig. 2. Demonstration of the use of the trajectory method from the DiscreteDynamicalSystem class in pynamicalsys for the 
model="henon␣map" with parameters 𝑎 = 1.4 and 𝑏 = 0.3 in (a), and of the bifurcation_diagram method over the interval 𝑎 ∈ [1.0, 1.4] with 
𝑏 = 0.3 in (b). Execution times; (a) 283ms and (b) 3.14 s.

5 >>> parameters = [a, b]
6 >>> total_time = 1000000 # total iteration time
7 >>> transient_time = 500000 # Transient time for the Henon map
8 >>> trajectory = ds.trajectory(u, total_time, parameters=parameters, transient_time=transient_time)
9 >>> trajectory.shape
10 (500000, 2)

The transient_time argument tells the trajectory() method the number of iterations to discard, thus it returns a 
two-dimensional array of total_time−transient_time rows.

When studying dissipative systems, one useful tool is the bifurcation diagram. The dynamical systems, in general, depend 
on different parameters and as these parameters change, the system can undergo transitions known as bifurcations. We use the 
bifurcation_diagram method of the DiscreteDynamicalSystem class of pynamicalsys:

1 obj.bifurcation_diagram(u, param_index , param_range , total_time , parameters=None , transient_time=None ,
↪ continuation=False , return_last_state=False , observable_index =0)

Here, u is the initial condition, param_index is an integer that corresponds to the position of the bifurcation parameter in the 
parameter list, i.e., 0 is the first parameter, 1 is the second, and so on. param_range determines the bifurcation parameter values. It 
can either be a predefined sample of parameters, i.e., param_range = [0.1, 0.2, 0.3] or it can be a tuple indicating the starting 
and ending values and the number of values for a linear spacing: param_range = (start, end, num_params). total_time is 
the total iteration time, including the transient time, and parameters is a list with the remaining parameter values, i.e., those 
that remain fixed. If the system only has one parameter, when computing the bifurcation diagram this should be set to None. 
transient_time is the initial iteration time to discard (default is None) and continuation determines whether to reset or not the 
initial condition for every new parameter value. If continuation=False, for every new parameter value, the bifurcation diagram is 
computed using the provided initial condition u. However, if continuation=True, then it is performed a numerical continuation 
sweep, i.e., the initial condition for the next parameter value is the last state of the previous parameter (default is False). The 
argument return_last_state determines whether to return the last state as well (default is False) and observable_index 
corresponds to the coordinate used in the bifurcation diagram. By default, it uses the first coordinate. To use a different one, set 
this argument to observable_index=1, to use the second coordinate, for example.

For the Hénon map, we choose to fix 𝑏 = 0.3 and we want to change 𝑎 in the interval 𝑎 ∈ [1.0, 1.4]. Thus, we proceed as follows 
[Fig.  2(b)]:

1 >>> from pynamicalsys import DiscreteDynamicalSystem as dds
2 >>> ds = dds(model="henon map")
3 >>> u = [0.1, 0.1] # Initial condition
4 >>> b = 0.3 # Keep b fixed
5 >>> parameters = b
6 >>> param_range = (1, 1.4, 2500) # Parameter range (a in this case)
7 >>> param_index = 0 # a is going to be changed (parameters = [a, b])
8 >>> total_time = 8000 # Total iteration time
9 >>> transient_time = 2000 # Transient time
10 >>> param_values, bifurcation_diagram = ds.bifurcation_diagram(u, param_index, param_range, total_time,

parameters=parameters, transient_time=transient_time)
11 >>> bifurcation_diagram.shape
12 (2500, 6000)
5 
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The bifurcation_diagram() method returns two arrays: the first contains all parameter values, and the second is a 2D array 
representing the corresponding coordinates for each parameter value. If return_last_state is set to True, then it also returns 
the last state of the system at the final parameter value. This can be useful when studying hysteresis, intriguing phenomena that 
can be present in diverse dynamical systems [54].

3. Chaotic indicators

Chaos is notably present in both natural phenomena and mathematical models. Developing reliable methods and tools to identify 
and distinguish between chaotic and periodic behaviors is often a crucial objective. Numerous numerical techniques, each with dis-
tinct approaches, have been proposed to detect the presence of chaotic dynamics. To facilitate this, the DiscreteDynamicalSystem 
class of pynamicalsys offers a variety of easy-to-use methods.

This section is organized as follows: (i) Lyapunov exponents (LEs), (ii) Linear dependence indexes, (iii) Weighted Birkhoff 
averages, (iv) Recurrence time entropy, and (v) Hurst exponent.

3.1. Lyapunov exponents

3.1.1. One-dimensional maps
The LEs are a measure of the average exponential rates at which infinitesimal perturbations to a trajectory in a dynamical system 

grow or decay over time. Given an one-dimensional discrete dynamical system 𝑥𝑛+1 = 𝑓 (𝑥𝑛), where 𝑓 ∶ R → R is a smooth map. 
Let 𝑥0 and 𝑦0 = 𝑥0 + 𝛿0 be two initial conditions infinitesimally close to each other (||𝛿0|| ≪ 1). After one iteration, the two initial 
conditions become 

𝑥1 = 𝑓 (𝑥0),

𝑦1 = 𝑓 (𝑥0 + 𝛿0).
(3)

The difference between them is 
𝛿1 = 𝑦1 − 𝑥1 = 𝑓 (𝑥0 + 𝛿0) − 𝑓 (𝑥0). (4)

For 𝛿0 small enough, we can linearize 𝑓 (𝑥0 + 𝛿0) using a first-order Taylor expansion: 

𝑓 (𝑥0 + 𝛿0) = 𝑓 (𝑥0) + 𝑓 ′(𝑥0)𝛿0 + (𝛿20 ), (5)

leading us to 𝛿1 = 𝑓 ′(𝑥0)𝛿0. For the next iteration, we obtain 𝛿2 = 𝑓 ′(𝑥1)𝑓 ′(𝑥0)𝛿0. Thus, repeating this for 𝑛 iterations, we obtain 

𝛿𝑛 =

(𝑛−1
∏

𝑖=0
𝑓 ′(𝑥𝑖)

)

𝛿0. (6)

We want to quantify how this perturbation grows exponentially. Thus, we derive the exponential rate of divergence: 

1
𝑛
log

|

|

|

|

𝛿𝑛
𝛿0

|

|

|

|

= 1
𝑛
log

(𝑛−1
∏

𝑖=0

|

|

𝑓 ′(𝑥𝑖)||

)

= 1
𝑛

𝑛−1
∑

𝑖=0
log |

|

𝑓 ′(𝑥𝑖)||. (7)

The Lyapunov exponent 𝜆 is defined as the long-term average exponential rate of separation, i.e., 

𝜆 = lim
𝑛→∞

1
𝑛

𝑛−1
∑

𝑖=0
log |

|

𝑓 ′(𝑥𝑖)||. (8)

3.1.2. Higher-dimensional maps
For higher-dimensional dynamical systems, the derivation is somewhat different. Given a 𝑑-dimensional discrete-time dynamical 

system 𝐱𝑛+1 = 𝐟 (𝐱𝑛), where 𝐟 ∶ R𝑑 → R𝑑 is a smooth map, the Lyapunov spectrum 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑑 is defined under Oseledec’s 
multiplicative ergodic theorem [55]. Let 𝐽 (𝐱) = 𝐃𝐟 (𝐱) be the Jacobian matrix of the map 𝐟 at point 𝐱. The matrix 

𝐽𝑛(𝐱0) = 𝐽 (𝐱𝑛−1)𝐽 (𝐱𝑛−2)… 𝐽 (𝐱1)𝐽 (𝐱0) (9)

describes the evolution of the tangent vectors under the linearized dynamics. Oseledec’s theorem states that for almost every initial 
condition 𝐱0, the following limit exists: 

𝛬(𝐱0) = lim
𝑛→∞

[

𝐽𝑇
𝑛 (𝐱0)𝐽𝑛(𝐱0)

]1∕2𝑛. (10)

The LEs are related to the eigenvalues of the matrix 𝛬 and are given by 

𝜆𝑖 = lim
𝑛→∞

1
𝑛
log ‖

‖

𝐽𝑛(𝐱0)𝐯𝑖‖‖, (11)

where 𝐯𝑖 are the corresponding eigenvector of 𝛬(𝐱0).
While Eqs. (10) and (11) are extremely elegant in a theoretical sense, directly computing the matrix 𝐽𝑛(𝐱0) leads to numerical 

instability, and the product becomes dominated by the direction of maximal growth, making it impossible to calculate the smaller 
6 
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LEs. To overcome this issue, several methods have been proposed to numerically estimate the LEs [56–59]. We describe in the 
following the QR-based approach that has become the standard procedure in numerical studies of the LEs. The idea of this method 
is to evolve an orthonormal basis of tangent vectors and reorthonormalize them at each step using a QR decomposition. Given an 
initial orthonormal matrix 𝑄0 ∈ R𝑑×𝑑 , where each column of 𝑄0 is a tangent vector, the evolution of 𝑄0 according to the linearized 
dynamics is 

𝐴1 = 𝐽1𝑄0. (12)

We now perform a QR decomposition on 𝐴1: 𝐴1 = 𝑄1𝑅1, where 𝑄1 ∈ R𝑑×𝑑 is an orthonormal matrix and 𝑅1 ∈ R𝑑×𝑑 is an upper 
triangular matrix. We can then write 

𝐽1 = 𝑄1𝑅1𝑄
−1
0 . (13)

For the second iteration, the procedure is analogous and we obtain 𝐽2 = 𝑄2𝑅2𝑄−1
1 . By repeating this procedure recursively, we can 

express the Jacobian matrix at each time 𝑛 as 
𝐽𝑛 = 𝑄𝑛𝑅𝑛𝑄

−1
𝑛−1. (14)

The physical meaning behind this method is as follows: the Jacobian matrix 𝐽𝑛 evolves the orthonormal basis 𝑄𝑛−1 under the 
linearized dynamics, resulting in a new set of vectors 𝐴𝑛 = 𝐽𝑛𝑄𝑛−1, which are generally not orthonormal. If we continually evolve 
this set of vectors, eventually all of them align with the direction of maximal growth and we lose all information about the other 
LEs. When we perform a QR decomposition on 𝐴𝑛, yielding 𝐴𝑛 = 𝑄𝑛𝑅𝑛, we are reorthonormalizing the tangent basis to prevent 
the collapse onto the direction of maximum growth, while simultaneously extracting the local stretching and shrinking information 
captured by the matrix 𝑅𝑛. The matrix 𝑄𝑛 then becomes the updated orthonormal basis, aligned with the principal directions of local 
deformation. The absolute values of the diagonal elements of 𝑅𝑛, |𝑟(𝑛)𝑖𝑖 | , represent the instantaneous rates of expansion or contraction 
along each orthonormal direction. Therefore, by computing the time averages of the logarithms of these values, we can estimate 
the LEs: 

𝜆𝑖 = lim
𝑛→∞

1
𝑛

𝑛
∑

𝑗=1
log ||

|

𝑟(𝑗)𝑖𝑖
|

|

|

. (15)

This QR method is not just a computational technique. It is connected with the theoretical framework established by Oseledec’s 
theorem [Eq. (10)]. To see that, let us substitute each Jacobian matrix in terms of its QR decomposition in the matrix product in 
Eq. (9). We get 

𝐽𝑛 =
(

𝑄𝑛𝑅𝑛𝑄
−1
𝑛−1

)(

𝑄𝑛−1𝑅𝑛−1𝑄
−1
𝑛−2

)

…
(

𝑄1𝑅1𝑄
−1
0
)

. (16)

All of the 𝑄−1
𝑘  and 𝑄𝑘 cancel due to the orthogonality of the matrices and the expression simplifies to 

𝐽𝑛 = 𝑄𝑛
(

𝑅𝑛𝑅𝑛−1 …𝑅1
)

𝑄−1
0 = 𝑄𝑛𝑛𝑄

−1
0 , (17)

where 𝑛 = 𝑅𝑛𝑅𝑛−1 …𝑅1. Now, we compute the product 𝐽𝑇
𝑛 𝐽𝑛: 

𝐽𝑇
𝑛 𝐽𝑛 = (𝑄−1

0 )𝑇𝑇
𝑛 𝑄

𝑇
𝑛 𝑄𝑛𝑛𝑄

−1
0 ,

= 𝑄−𝑇
0 𝑇

𝑛 𝑛𝑄
−1
0 .

(18)

This construction leads to a similarity transformation: the matrix 𝑇
𝑛 𝑛 is similar to 𝐽𝑇

𝑛 𝐽𝑛, and thus both share the same eigenvalues. 
As 𝑛 → ∞, the eigenvalues of the matrix 𝐽𝑇

𝑛 𝐽𝑛 converge to those of the limiting matrix 𝛬(𝐱0) [Eq. (10)], whose eigenvalues define 
the LEs. Therefore, the eigenvalues of 𝑇

𝑛 𝑛 are a numerical approximation to those of 𝐽𝑇
𝑛 𝐽𝑛 and consequently yield the same LEs 

in the long-time limit [Eq. (15)].
For two-dimensional systems, it is possible to derive an analytical recursive expression for the diagonal elements of 𝑅𝑛. We can 

rewrite Eq. (14) as 
𝑅𝑛 = 𝑄−1

𝑛 𝐽𝑛𝑄𝑛−1. (19)

Let us choose as our orthogonal matrix the two-dimensional rotation matrix: 

𝑄𝑛 =
(cos 𝛽𝑛 − sin 𝛽𝑛
sin 𝛽𝑛 cos 𝛽𝑛)

. (20)

This matrix rotates a two-dimensional vector counterclockwise by an angle 𝛽. Thus, Eq. (19) becomes 

𝑅𝑛 =

(

𝑟(11)𝑛 𝑟(12)𝑛
0 𝑟(22)𝑛

)

=
(

cos 𝛽𝑛 sin 𝛽𝑛
− sin 𝛽𝑛 cos 𝛽𝑛

)

(

𝐽 (11)
𝑛 𝐽 (12)

𝑛
𝐽 (21)
𝑛 𝐽 (22)

𝑛

)

(

cos 𝛽𝑛−1 − sin 𝛽𝑛−1
sin 𝛽𝑛−1 cos 𝛽𝑛−1

)

. (21)

The diagonal elements are then given by 
𝑟(11)𝑛 = cos 𝛽𝑛

(

𝐽 (11)
𝑛 cos 𝛽𝑛−1 + 𝐽 (12)

𝑛 sin 𝛽𝑛−1
)

+ sin 𝛽𝑛
(

𝐽 (21)
𝑛 cos 𝛽𝑛−1 + 𝐽 (22)

𝑛 sin 𝛽𝑛−1
)

,
(22) ( (11) (12) ) ( (21) (22) ) (22)

𝑟𝑛 = − sin 𝛽𝑛 −𝐽𝑛 sin 𝛽𝑛−1 + 𝐽𝑛 cos 𝛽𝑛−1 + cos 𝛽𝑛 −𝐽𝑛 sin 𝛽𝑛−1 + 𝐽𝑛 cos 𝛽𝑛−1 ,
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and the relation between 𝛽𝑛 and 𝛽𝑛−1 is 

tan 𝛽𝑛 =
𝐽 (21)
𝑛 cos 𝛽𝑛−1 + 𝐽 (22)

𝑛 sin 𝛽𝑛−1
𝐽 (11)
𝑛 cos 𝛽𝑛−1 + 𝐽 (12)

𝑛 sin 𝛽𝑛−1
. (23)

Therefore, given an initial angle 𝛽0 (typically 𝛽0 = 0), we first calculate 𝛽1 using Eq. (23). Then, we calculate the diagonal elements 
of the matrix 𝑅𝑛 via Eq. (22). By repeating this process iteratively, we can calculate the LEs using Eq. (15).

To calculate the LEs, we use the lyapunov method of the DiscreteDynamicalSystem class of our package pynamicalsys:

1 obj.lyapunov(u, total_time , parameters=None , method="QR", return_history=False , sample_times=None ,
↪ transient_time=None , log_base=np.e)

The arguments u, total_time, and parameters are the initial condition, the list of parameters of the system, and the total 
iteration time, respectively. For an one-dimensional system, the lyapunov method computes the Lyapunov exponent via Eq. (8). 
For more than one dimension, the optional argument method determines which QR decomposition to use. For two-dimensional 
systems, if method="QR", it automatically uses the analytical recursive expression we have derived [Eqs. (22) and (23)]. For 
higher-dimensional systems, the default method employs the modified Gram–Schmidt algorithm to perform QR decomposition. 
If the problem requires improved numerical stability (e.g. very large-scale problem), it is possible to set method="QR_HH" to 
use Householder reflections instead. The optional argument return_history, when set to True (default is False) tells the 
‘lyapunov method to return the value of each Lyapunov exponent at every time step. However, for long simulations, this can result 
in extremely large arrays that may exceed the system’s memory capacity. To avoid this, you can pass to the optional argument 
sample_times a list of time points so that the lyapunov method returns the LEs only at those specified times. The optional 
argument transient_time determines the number of iterations to discard before starting the LEs calculation and log_base is the 
base of the logarithm used to calculate the LEs (default is set to np.e, i.e., the natural logarithm).

3.1.3. User-defined systems
Let us then consider a system that is not built-in. We consider the dissipative asymmetric kicked rotor map (DAKRM), defined 

as [60–63] 
𝑦𝑛+1 = (1 − 𝛾)𝑦𝑛 + 𝑘

[

sin (𝑥𝑛) + 𝑎 sin
(

2𝑥𝑛 +
𝜋
2

)]

,

𝑥𝑛+1 = 𝑥𝑛 + 𝑦𝑛+1 mod 2𝜋,
(24)

where 𝑘 ≥ 0 corresponds to the strength of the perturbation, similar to 𝑘 in the standard map [cf. Eq. (1)], 𝑎 is the asymmetry 
parameter which breaks the spatial symmetry for 𝑎 ≠ 0 and 𝛾 ∈ [0, 1] is the dissipative parameter. For 𝑎 = 0 and 𝛾 = 0, we recover 
the standard map. To calculate the LEs, we need the Jacobian matrix of the system, which is given by 

𝐽 =
⎛

⎜

⎜

⎝

1 + 𝜕𝑦𝑛+1
𝜕𝑥𝑛

𝜕𝑦𝑛+1
𝜕𝑦𝑛

𝜕𝑦𝑛+1
𝜕𝑥𝑛

𝜕𝑦𝑛+1
𝜕𝑦𝑛

⎞

⎟

⎟

⎠

, (25)

where 
𝜕𝑦𝑛+1
𝜕𝑥𝑛

= 𝑘
[

cos (𝑥𝑛) + 2𝑎 cos
(

2𝑥𝑛 +
𝜋
2

)]

,

𝜕𝑦𝑛+1
𝜕𝑦𝑛

= 1 − 𝛾.
(26)

Since the DAKRM is not built-in within the pynamicalsys package, we need to define it ourselves. The mapping function 
signature should be u1 = f(u0, parameters), i.e., given the initial condition and the parameters, the function returns the next 
state:

1 >>> import numpy as np
2 >>> from numba import njit
3 >>> @njit
4 >>> def dakrm(u, parameters):
5 ... k, a, gamma = parameters
6 ... x, y = u
7 ... y_new = (1 - gamma) * y + k * (np.sin(x) + a * np.sin(2 * x + np.pi / 2))
8 ... x_new = (x + y_new) % (2 * np.pi)
9 ... return np.array ([ x_new, y_new])

Note the use of the @njit decorator before the function definition. It is absolutely crucial that both the model and Jacobian 
functions are decorated with @njit. This decorator enables Numba to compile the function to optimized machine code, resulting 
in a significant performance boost for numerical computations. Furthermore, since all methods within pynamicalsys are also 
8 
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Fig. 3. Demonstration of the use of the (a) lyapunov method and (b) period method from the DiscreteDynamicalSystem class of 
pynamicalsys for the dissipative kicked rotor map [Eq. (24)] with parameter 𝛾 = 0.8. Execution times: (a) 25min 31 s and (b) 7min 56 s. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

decorated with @njit, the model functions must be decorated similarly to ensure compatibility. Without this, Numba would raise 
errors due to mixing compiled and uncompiled functions. Having defined the model function, the next step is to define the Jacobian 
matrix function. The Jacobian function signature is J = jac(u, parameters, *args), i.e., given the current state of the system 
and its parameters, the function returns a two-dimensional array of shape (d, d), where d is the dimension of the system:

1 >>> @njit
2 >>> def dakrm_jacobian(u, parameters, *args):
3 ... k, a, gamma = parameters
4 ... x, y = u
5 ... dFdx = k * (np.cos(x) + 2 * a * np.cos(2 * x + np.pi / 2))
6 ... dFdy = 1 - gamma
7 ... return np.array ([
8 ... [1 + dFdx, dFdy],
9 ... [dFdx, dFdy ]])

Finally, with both the map equation and Jacobian matrix defined, we can create the dynamical system object as

1 >>> ds = dds(mapping=dakrm, jacobian=dakrm_jacobian, system_dimension =2, number_of_parameters =3)

Even though dds also takes on the backwards_mapping argument, since we are not using it to calculate the LEs, it is not 
necessary to provide it. If, however, one wishes to calculate the manifolds of a dynamical system, for instance, then it becomes 
necessary. The point is, when defining a dynamical system that is not built-in, you only need to provide the functions that are going 
to be used. If you are only interested in drawing the trajectories, then you do not have to provide the Jacobian matrix, for instance.

To illustrate the calculation of the LEs, let us fix 𝑘 = 8.0 and 𝛾 = 0.8 and calculate them for 𝑎 = 0.47:

1 >>> u = [1.78, 0.0] # Initial condition
2 >>> total_time = 10000 # Total iteration time
3 >>> transient_time = 5000 # Transient time
4 >>> k, a, gamma = 8, 0.47, 0.8 # Parameters of the system
5 >>> parameters = [k, a, gamma]
6 >>> ds.lyapunov(u, total_time, parameters=parameters, transient_time=transient_time)
7 array ([ -0.35202562, -1.25741229])

and for 𝑎 = 0.6:

1 >>> u = [1.78, 0.0] # Initial condition
2 >>> total_time = 10000 # Total iteration time
3 >>> transient_time = 5000 # Transient time
4 >>> k, a, gamma = 8, 0.6, 0.8 # Parameters of the system
5 >>> parameters = [k, a, gamma]
6 >>> ds.lyapunov(u, total_time, parameters=parameters, transient_time=transient_time)
7 array([ 1.57224186, -3.18167977])
9 



M.R. Sales et al. Chaos, Solitons and Fractals 201 (2025) 117269 
Thus, the lyapunov() method returns an one-dimensional array with all the LEs in decreasing order. For 𝑎 = 0.47 we obtain 
two negative LEs, indicating periodic dynamics, and for 𝑎 = 0.6 the largest Lyapunov exponent is positive while the second one is 
negative, i.e., the dynamics is chaotic.

Let us suppose now that you do not know the Jacobian matrix of your system. You can instantiate the dds class without providing 
a Jacobian matrix function:

1 >>> ds = dds(mapping=dakrm, system_dimension =2, number_of_parameters =3)

In this case, the Jacobian matrix is numerically determined as 

𝐽𝑖𝑗 =
𝑓𝑖(𝑥1, 𝑥2,… , 𝑥𝑗 + 𝜖,… , 𝑥𝑛) − 𝑓𝑖(𝑥1, 𝑥2,… , 𝑥𝑗 − 𝜖,… , 𝑥𝑛)

2𝜖
, (27)

where 𝑓𝑖 is the 𝑖th component of the mapping and 𝜖 is chosen as 

𝜖 =
(

𝜀mach
)1∕3

⋅max
(

1, ‖𝐮‖2
)

, (28)

where 𝜀mach is the machine epsilon (the smallest representable difference between floating point numbers), 𝐮 = (𝑥1,… , 𝑥𝑑 )𝑇  is the 
state vector, and ‖𝐮‖2 is the Euclidean norm of the state vector. This choice is a compromise between truncation and round-off 
errors [64]. The LEs is computed in the same way as before:

1 >>> u = [1.78, 0.0] # Initial condition
2 >>> total_time = 10000 # Total iteration time
3 >>> transient_time = 5000 # Transient time
4 >>> k, a, gamma = 8, 0.6, 0.8 # Parameters of the system
5 >>> parameters = [k, a, gamma]
6 >>> ds.lyapunov(u, total_time, parameters=parameters, transient_time=transient_time)
7 array([ 1.5740678 , -3.18114158])

The final value, of course, differs from the one obtained when we instantiated the dds class with the Jacobian matrix.
While the LEs tell us that for 𝑎 = 0.4 the dynamics is periodic, they tell us nothing about the period itself. This information can 

be obtained using the period of the DiscreteDynamicalSystem class of pynamicalsys:

1 obj.period(u, max_time , parameters=None , transient_time=None , tolerance =1e-10, min_period =1, max_period
↪ =1000 , stability_checks =3)

The arguments u, parameters, and transient_time have been covered already. The argument max_time is the maximum 
iteration time. The optional argument tolerance specifies the numerical tolerance for period detection; it defines the radius of the 
neighborhood around the initial condition used to determine if the trajectory has returned. The optional arguments min_period 
and max_period set the minimum and maximum periods to consider, respectively. The optional argument stability_checks 
determines how many consecutive returns to the neighborhood are required to confirm the period and ensure numerical stability.

For the previous period example, you can proceed as follows:

1 >>> u = [1.78, 0.0] # Initial condition
2 >>> total_time = 10000 # Total iteration time
3 >>> transient_time = 5000 # Transient time
4 >>> k, a, gamma = 8, 0.47, 0.8 # Parameters of the system
5 >>> parameters = [k, a, gamma]
6 >>> ds.period(u, total_time, parameters=parameters, transient_time=transient_time)
7 2

The period method determines whether a given initial condition leads to a periodic orbit. If so, it returns the period, otherwise, 
it returns -1 to indicate a quasiperiodic or chaotic orbit. In the last example, the period of the orbit is 2. By changing continuously 
the parameters, it is possible to calculate the LEs and the period in the parameter space as well, as shown in Fig.  3 [63]. The chaotic 
regions in Fig.  3(a) are depicted in pink, while the regular regions appear in green. White points indicate locations where 𝜆1 → 0, 
corresponds to period-doubling bifurcations. These bifurcations can be more clearly observed in Fig.  3(b), where colors represent 
the periodicity of each point. Within the shrimp-shaped domains [65,66], the period progresses from 1 to 2, 4, and so on, eventually 
leading to chaotic dynamics (marked in white).
10 
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Fig. 4. Demonstration of the use of the lyapunov method of the DiscreteDynamicalSystem class of pynamicalsys to compute the time 
series of the LEs for the standard map [Eq. (1)] using specific sample times for the parameter 𝑘 = 0.9. Execution times: (a) 682ms and (b) 
2min 29 s.  (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

3.1.4. Lyapunov exponents time evolution
In many situations, the history of the LEs is as important as the final value. It tells us how the LEs approach their asymptotic 

value. To obtain the time evolution of the LEs, set return_history=True (the default is False) in the lyapunov method. To 
illustrate this feature, let us return to the standard map [Eq. (1)]. We choose 𝑘 = 0.9 and select five regular and four chaotic initial 
conditions [Fig.  4(a)]. Then, we proceed as follows:

1 >>> import numpy as np
2 >>> from pynamicalsys import DiscreteDynamicalSystem as dds
3 >>> ds = dds(model="standard map")
4 >>> k = 0.9 # Parameter of the standard map
5 >>> total_time = 100000000 # Total iteration time
6 >>> sample_times = np.unique(np.logspace(np.log10 (1), np.log10(total_time), 1000).astype(int)) # Sample times 

to return the LEs
7 >>> u = np.array ([[0.26, 0], [0.4, 0], [0, 0.45], [0.1, 0.25], [0.1, 0.68], [0.06, 0.05], [0, 0.3], [0, 0.6]

, [0, 0.7]]) # Initial conditions (the first 5 are regular and the last 4 are 
chaotic)

8 >>> history_LEs = np.array ([ds.lyapunov(u[i], total_time, parameters=k, return_history=True, sample_times=
sample_times) for i in range(u.shape [0])])

9 >>> history_LEs.shape
10 (9, 836, 2)

This example calculates the history of the LEs for each initial condition at the specified sample times [Fig.  4(b)]. The largest 
Lyapunov exponent for the blue, orange, red, green, and purple initial conditions converges toward zero as a power law, indicating 
regular dynamics. Additionally, they all go to zero at the same rate. The fastest rate of 𝜆1 toward zero is obtained exactly on the 
elliptic points, as Manchein and Beims have demonstrated [67].

The remaining initial conditions, brown, pink, yellow, and gray, exhibit a positive largest Lyapunov exponent, indicating a chaotic 
behavior. They seem to converge to a positive value, however, on several occasions, when 𝜆1 seems to have converged, its value 
suddenly decreases and after some time it starts to increase again, and once again, its value decreases. This behavior happens for 
arbitrarily long times due to the phenomenon of stickiness [48,68–77]. The stickiness effect, first identified by Contopoulos [68], 
influences chaotic orbits as they approach stability islands. When near a regular region, these orbits can become trapped in the 
vicinity of the islands for arbitrarily long times, exhibiting quasiperiodic-like behavior during this transient phase. As a result, the 
largest Lyapunov exponent decreases. This phenomenon arises from the complex hierarchical structure of islands-around-islands 
embedded within the chaotic sea of two-dimensional, area-preserving maps. After escaping one sticky region, a chaotic orbit may 
later become trapped again in another, repeating the process. Such successive trappings lead to intermittent dynamics, affecting 
statistical properties, such as diffusion, decay of correlations, and transport.

3.1.5. Finite-time Lyapunov exponents
Due to the intermittent behavior of chaotic orbits, computing the LEs for longer times might not be the best approach to detect 

and characterize the stickiness effect. Instead, Szezech et al. [78] proposed the calculation of the finite-time LEs (FTLEs). Before 
we proceed, we should clarify the term finite-time. Strictly speaking, all numerical simulations are finite-time. However, their key 
idea was to compute the LEs not for the whole single trajectory with long times, 𝑁 ≫ 1, but rather for shorter time windows, 
𝑛 ∼ 1, along the same trajectory. Since a chaotic orbit will eventually fill the whole available chaotic component, by considering 
a total time 𝑁 ≫ 1 and calculating the Lyapunov exponent in windows of size 𝑛 ≪ 𝑁 , we obtain a collection of values for the 
FTLEs, {𝜆(𝑖)1 }𝑖=1,2,…,𝑀 , where 𝑀 = 𝑁∕𝑛, and these values characterize both the intervals where the chaotic orbits are trapped and 
the intervals where they are in the bulk of the chaotic sea.
11 
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Fig. 5. (a) Demonstration of the use of the lyapunov exponent method of the DiscreteDynamicalSystem class of pynamicalsys to calculate 
the LEs as a function of the parameter 𝑘 of the standard map [Eq. (1)] and (b) and (c) demonstration of the use of the finite_time_lyapunov 
exponent method of the DiscreteDynamicalSystem class of pynamicalsys to calculate the distribution of FTLEs for the standard map with 
𝑘 = 1.5. Execution times: (a) 9.56 s, (b) 846ms, and (c) 39 s.

To calculate the FTLEs, we use the finite_time_lyapunov method of the DiscreteDynamicalSystem class of our package 
pynamicalsys:

1 obj.finite_time_lyapunov(u, total_time , finite_time , parameters=None , method="QR", transient_time=None ,
↪ log_base=np.e, return_points=False)

Here, total_time is the total iteration time, 𝑁 , whereas finite_time is the size of the time windows, 𝑛, that the LEs are 
calculated. The optional argument return_points, if set to True, tells the finite_time_lyapunov method to also return the 
initial condition used to generate the corresponding FTLEs. The method thus returns two arrays. Both of them are arrays with 
𝑀 = 𝑁∕𝑛 rows and 𝑑 columns. Each row contains the FTLEs for the first array and for the second array, each row contains the 
initial condition that generated the respective finite-time Lyapunov exponent.

The following code snippet illustrates the calculation of the LEs as a function of the parameter 𝑘 as well as the calculation of 
the FTLEs:

1 >>> import numpy as np
2 >>> from pynamicalsys import DiscreteDynamicalSystem as dds
3 >>> ds = dds(model="standard map")
4 >>> u = [0.5, 0.25] # Initial condition for 𝜆 vs k
5 >>> k_range = (0, 5, 5000) # Interval in k
6 >>> k = np.linspace (* k_range) # Create the k values
7 >>> total_time = 5000 # Total iteration time
8 >>> lyapunov_vs_k = [ds.lyapunov(u, total_time, k[i]) for i in range(k_range [2])]
9 >>> u = [0.05, 0.05] # Initial condition for the finite-time Lyapunov exponents
10 >>> k = 1.5 # Parameter k
11 >>> total_time = 100000000 # Total iteration time
12 >>> finite_time = 200 # Finite-time (window size)
13 >>> ftle, points = ds.finite_time_lyapunov(u, total_time, finite_time, parameters=k, return_points=True)

In Fig.  5(a) we show the behavior of 𝜆1 as a function of 𝑘 for the initial condition (𝑥0, 𝑦0) = (0.5, 0.25). We use the points output 
of the finite-time_lyapunov method as initial conditions and we generate their trajectory for 𝑛 = 200. We color the points 
of the trajectory according to their respective finite-time Lyapunov exponent value, and this yields Fig.  5(b). We also calculate the 
distribution of the finite-time values [Fig.  5(c)]. We color the histogram according to the finite-time value using the same color code 
as in Fig.  5(b). The distribution is a bi-modal distribution, with the largest peak corresponding to the times when the trajectory was 
on the bulk of the chaotic sea. The smaller peak corresponds to the times when the trajectory was trapped in the vicinity of a stability 
island. By comparing the colors in Fig.  5(b) and (c), we can identify the regions in phase space that generated each finite-time value. 
The smaller values, mainly purple color, correspond to the neighborhood of the islands. The inset in Fig.  5(c) is the ‘‘times series’’ of 
the finite-time values, i.e., for each time window, we plot the corresponding value of 𝜆(𝑖)1 . In the inset, we notice mainly two sharp 
drops in the value of 𝜆(𝑖)1 . These drops are the times when the trajectory became trapped and they are the reason for the bi-modal 
distribution.
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3.2. Linear dependence indexes

As we have discussed in Section 3.1, given an orthonormal basis 𝑄 ∈ R𝑑×𝑑 , the Jacobian matrix 𝐽 evolves this basis under the 
linearized dynamics according to 𝐴𝑛 = 𝐽𝑛𝑄𝑛−1. As we continue to evolve this basis, without performing the QR decomposition, all 
the basis vectors eventually align with the direction of maximal growth. In light of that, two efficient chaotic indicators have been 
proposed [79–81], the second being the generalization of the first. Given a 𝑑-dimensional discrete-dynamical system 𝐱𝑛+1 = 𝐟 (𝐱𝑛), 
where 𝐟 ∶ R𝑑 → R𝑑 , let 𝐽 (𝐱) = 𝐃𝐟 (𝐱) be the Jacobian matrix of the map 𝐟 at point 𝐱 and 𝑄 ∈ R𝑑×2 be a matrix whose columns are 
two deviation vectors, 𝐯1 ∈ R𝑑 and 𝐯2 ∈ R𝑑 . As the deviation vectors evolve under the linearized dynamics, 𝐯1 and 𝐯2 gradually 
align with the direction of the maximum Lyapunov exponent. The deviation vectors can either align parallel or anti-parallel to the 
most unstable direction. Thus, we define the parallel alignment index 

PAI(𝑛) =
‖

‖

‖

‖

‖

𝐯1
‖

‖

𝐯1‖‖
−

𝐯2
‖

‖

𝐯2‖‖

‖

‖

‖

‖

‖

(29)

and the antiparallel alignment index 

AAI(𝑛) =
‖

‖

‖

‖

‖

𝐯1
‖

‖

𝐯1‖‖
+

𝐯2
‖

‖

𝐯2‖‖

‖

‖

‖

‖

‖

. (30)

The smaller alignment index (SALI) is then given by 
SALI(𝑛) = min [PAI(𝑛),AAI(𝑛)]. (31)

When the two deviation vectors become parallel, PAI → 0 and AAI →
√

2. On the other hand, when the two deviation vectors 
become antiparallel, AAI → 0 and PAI →

√

2. Thus, the SALI captures the information on whether the two deviation vectors tend 
to have the same direction, either parallel or antiparallel. For 𝑑-dimensional dynamical systems with 𝑑 > 2, the two vectors tend to 
become parallel or antiparallel for chaotic orbits [82], i.e., the SALI tends to zero. On the other hand, for regular orbits, the SALI 
fluctuates around a positive value. For 2-dimensional maps, the SALI goes to zero for both chaotic and regular orbits. However, the 
SALI displays an exponential decay for chaotic orbits whereas for regular orbits, the decay follows a power-law. Thus, by measuring 
how fast the SALI goes to zero, it is possible to distinguish between regularity and chaos in 2-dimensional maps as well.

The generalization of the SALI, the generalized alignment index (GALI), considers the evolution of more than two deviation 
vectors, i.e., considering the matrix 𝑄 ∈ R𝑑×𝑘, with 𝑘 ≤ 𝑑, whose columns are the 𝑘 deviation vectors {𝐯𝑖

}

𝑖=1,2,…,𝑘, the deviation 
vectors evolve under the linearized dynamics as 𝑄𝑛 = 𝐽𝑛𝑄𝑛+1. The GALI𝑘 is proportional to the volume elements formed by the 𝑘
deviation vectors and it is defined as the norm of the wedge product of the 𝑘 deviation vectors [81]: 

GALI𝑘 = ‖

‖

𝐯̂1 ∧ 𝐯̂2 ∧⋯ ∧ 𝐯̂𝑘‖‖, (32)

where 𝐯̂ = 𝐯∕‖𝐯‖ denotes a unit vector. The GALI has been shown to accurately distinguish between regular and chaotic orbits, 
identify the dimensionality of the space of regular motion, and predict the diffusion of chaotic orbits. Additionally, GALI2 ∼ SALI. 
However, GALI𝑘 involves the computation of 

(𝑑
𝑘

) determinants each time step. For systems with high dimensionality, the computation 
of GALI thus becomes impractical. For this reason, Antonopoulos and Bountis [83] introduced a new methodology that takes 
advantage of the linear dependence of the deviation vectors. They realized that both SALI and GALI are, in fact, measures of the 
linear independence of the deviation vectors. During the time evolution of chaotic orbits, the deviation vectors, which evolve under 
the linearized dynamics, tend to become linearly dependent over time, i.e., to become asymptotically aligned with each other. 
Therefore, Antonopoulos and Bountis defined the linear dependence index (LDI) as 

LDI𝑘 =
𝑘
∏

𝑖=1
𝜎𝑖, (33)

where {𝜎𝑖
}

𝑖=1,2,…,𝑘 are the singular values of the matrix 𝑄 ∈ R𝑑×𝑘 whose columns are the 𝑘 deviation vectors. The singular values 
are, in fact, a measure of the linear dependence of the deviation vectors. As long as all deviation vectors are linearly independent, 
𝜎𝑖 > 0 for all 𝑖. As the system evolves in time and the deviation vector aligns with the most unstable direction, LDI𝑘 → 0. Thus, at 
each time step, we compute the singular value decomposition (SVD) of 𝑄: 

𝑄 = 𝑈𝛴𝑉 𝑇 , (34)

where 𝑈 ∈ R𝑑×𝑑 is an orthogonal matrix whose columns are the left singular vectors, 𝛴 ∈ R𝑑×𝑘 is a diagonal matrix containing the 
non-negative singular values, i.e., 𝜎𝑖 = 𝛴𝑖𝑖, and 𝑉 ∈ R𝑘×𝑘 is an orthogonal matrix whose columns are the right singular vectors.

To illustrate the computation of the LDI’s, we consider a four-dimensional symplectic map, given by 
𝑥(1)𝑛+1 = 𝑥(1)𝑛 + 𝑥(2)𝑛 mod 2𝜋,

𝑥(2)𝑛+1 = 𝑥(2)𝑛 − 𝜖1 sin
(

𝑥(1)𝑛 + 𝑥(2)𝑛
)

− 𝜉
[

1 − cos (𝑥(1)𝑛 + 𝑥(2)𝑛 + 𝑥(3)𝑛 + 𝑥(4)𝑛 )
]

mod 2𝜋,

𝑥(3)𝑛+1 = 𝑥(3)𝑛 + 𝑥(4)𝑛 mod 2𝜋,

𝑥(4)𝑛+1 = 𝑥(4)𝑛 − 𝜖2 sin
(

𝑥(3)𝑛 + 𝑥(4)𝑛
)

− 𝜉
[

1 − cos (𝑥(1)𝑛 + 𝑥(2)𝑛 + 𝑥(3)𝑛 + 𝑥(4)𝑛 )
]

mod 2𝜋.

(35)

This map is composed of two coupled standard maps with parameters 𝜖1 and 𝜖2. The parameter 𝜉 is the coupling strength. For 𝜉 = 0, 
the two maps behave independently. We set the parameters to (𝜖 , 𝜖 , 𝜉) = (0.5, 0.1, 0.001) and we consider two initial conditions. One 
1 2
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Fig. 6. Demonstration of the use of the LDI method of the DiscreteDynamicalSystem class of pynamicalsys for two different initial 
conditions of a four-dimensional symplectic map [Eq. (35)]. Execution times: (a) 9.58 s and (b) 9.91 s.  (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)

regular: (𝑥(1)0 , 𝑥(2)0 , 𝑥(3)0 , 𝑥(4)0 ) = (0.5, 0, 0.5, 0) [red curve in Fig.  5(a)] and one chaotic: (𝑥(1)0 , 𝑥(2)0 , 𝑥(3)0 , 𝑥(4)0 ) = (3.0, 0, 0.5, 0) [blue curve in 
Fig.  5(a)].

To calculate the LDI’s, we use the LDI method of the DiscreteDynamicalSystem class from pynamicalsys:

1 obj.LDI(u, total_time , k, parameters=None , return_history=False , sample_times=None , tol=1e-16,
↪ transient_time=None , seed =13)

Here, the integer k specifies the number of deviation vectors. Optional arguments include return_history, which determines 
whether to return the full-time evolution of the LDI’s (default is False), sample_times, a list of times at which to sample the 
LDI (default is None), tol, the numerical tolerance for stopping the calculation (default is 10−16), transient_time, which allows 
skipping an initial transient phase (default is None), and seed, which sets the random seed to ensure reproducibility when generating 
the initial deviation vectors (default is 13). The following code illustrates how to calculate the LDI𝑘 for different initial conditions 
[Fig.  6(b)]:

1 >>> import numpy as np
2 >>> from pynamicalsys import DiscreteDynamicalSystem as dds
3 >>> ds = dds(model="4D symplectic map")
4 >>> info = ds.info
5 >>> info["parameters"] # Get the info about the order of the parameters
6 [’eps1’, ’eps2’, ’xi’]
7 >>> u = np.array ([[0.5, 0.0, 0.5, 0.0], [3.0, 0.0, 0.5, 0.0]]) # Initial conditions
8 >>> parameters = [0.5, 0.1, 0.001] # Define the parameters
9 >>> k = [2, 3, 4] # The numbers of deviation vectors
10 >>> total_time = int(1e5) # Total iteration time
11 >>> ldi = np.zeros((u.shape [0], total_time, len(k)))
12 >>> for i in range(len(k)):
13 ... for j in range(u.shape [0]):
14 ... ldi[j, :, i] = ds.LDI(u[j], total_time, k[i], parameters=parameters, return_history=True)

Fig.  6 shows the largest Lyapunov exponent and the LDI’s for 𝑘 = 2, 𝑘 = 3, and 𝑘 = 4, for two initial conditions, one regular 
and one chaotic, of the four-dimensional symplectic map [Eq. (35)]. The behavior of the LDI’s for the regular orbit (red, pink, and 
purple) and the chaotic orbit (blue, light blue, and dark blue) differs fundamentally. For instance, LDI2 for the regular orbit (red 
curve) oscillates around a positive value and does not converge to zero. On the other hand, the LDI2 for the chaotic orbit (blue 
curve) decreases toward zero exponentially fast, reaching the machine precision of 10−16 for less than 4 × 103 iterations. The LDI3
and LDI4 for the chaotic orbits (light blue and dark blue curves, respectively) decreases to zero even faster. And even though the 
LDI3 and LDI4 for the regular orbit (pink and purple curves, respectively) also decrease to zero, they do so in a power law, which is 
much slower than the exponential decay of the chaotic orbit. Therefore, the LDI is an extremely fast and accurate chaotic indicator.

Antonopoulos and Bountis [83] demonstrated that LDI𝑘 ∼ GALI𝑘 and thus LDI2 ∼ SALI. The red, fuchsia, and purple curves in 
Fig.  6(b) are the LDI curves for 𝑘 = 2, 𝑘 = 3, and 𝑘 = 4, respectively. These curves correspond to the regular initial condition. We 
observe that LDI2 does not tend to zero, but it rather oscillates around a positive value, corroborating the statement of Antonopoulos 
and Bountis. The LDI3 and LDI4, on the other hand, decay to zero but following a power-law [81]. The LDI for the chaotic initial 
condition [shades of blue in Fig.  6(b)] all decay to zero exponentially, analogously to GALI [81].

Therefore, computing either GALI𝑘 or LDI𝑘 yields the same result with the difference of the LDI demanding less CPU time. 
Additionally, there is no real difference between computing SALI or LDI . However, in this case, SALI is computationally faster than 
2
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the LDI2. Thus, if one is studying a two-dimensional map or for some reason is only interested in two deviation vectors, a faster 
alternative is to compute the SALI directly instead of the LDI2:

1 obj.SALI(u, total_time , parameters=None , return_history=False , sample_times=None , tol=1e-16, transient_time=
↪ None , seed =13)

It is about 9 times computationally faster than the LDI method, which makes sense since to calculate the SALI, we only need to 
evaluate the norms of the deviation vectors while the LDI’s require the singular value decomposition at each time step.

3.3. Weighted Birkhoff averages

The weighted Birkhoff average [84–89] is a powerful tool to classify the dynamics as regular or chaotic in a Hamiltonian system, 
without the problems introduced by the self-similar hierarchical structure, in which islands and chaotic orbits are mixed together 
in arbitrarily fine scales [87,88]. For a mapping of the form 𝐯𝑛+1 = 𝐌𝑛(𝐯0). The Birkhoff average of some function 𝑓 (𝐯) along this 
trajectory in phase space is defined as 

𝐵𝑁 (𝑓 )(𝐯0) =
1
𝑁

𝑁−1
∑

𝑛=0
𝑓◦𝐌𝑛(𝐯0). (36)

The Birkhoff ergodic theorem [90] states that time averages of the function 𝑓 along the trajectory converge to the phase space 
averages as 𝑁 → ∞

1
𝑁

𝑁−1
∑

𝑛=0
𝑓◦𝐌𝑛(𝐯0) → ∫ 𝑓𝑑𝜇, (37)

where 𝜇 is an invariant probability measure. However, convergence can be slow—scaling as 𝑁−1 for quasiperiodic orbits and 𝑁−1∕2

for chaotic ones—due to edge effects from finite-time segments.
To mitigate this, a weighted Birkhoff average is introduced: 

𝑊𝐵𝑁 (𝑓 )(𝐯0) =
𝑁−1
∑

𝑛=0
𝑤𝑛,𝑁𝑓◦𝐌𝑛(𝐯0), (38)

where 

𝑤𝑛,𝑁 =
𝑔(𝑛∕𝑁)

∑𝑁−1
𝑛=0 𝑔(𝑛∕𝑁)

, (39)

with an exponential bump function 

𝑔(𝑧) =

{

exp{−[𝑧(1 − 𝑧)]−1}, if 0 < 𝑧 < 1,
0, otherwise.

(40)

This choice ensures smooth vanishing at the endpoints and preserves regularity. When 𝑓 , 𝑔, and 𝐌 are 𝐶∞, the convergence 
becomes super-polynomial [86]: 

|

|

|

|

𝑊𝐵𝑁 (𝑓 )(𝐯0) − ∫ 𝑓𝑑𝜇
|

|

|

|

≤ 𝐶𝑚𝑁
−𝑚. (41)

Notably, this acceleration applies only to regular orbits. Moreover, the convergence rate is largely independent of the choice of 𝑓 , 
allowing the use of simple observables, such as 𝑓 (𝑥, 𝑦) = sin (𝑥 + 𝑦) [84] or 𝑓 (𝑥) = cos 𝑥 [87].

To distinguish between regular and chaotic dynamics, one computes 2𝑁 iterations of 𝐌 and compares: 

dig = − log10 ||𝑊𝐵𝑁 (𝑓 )(𝐯0) −𝑊𝐵𝑁 (𝑓 )(𝐯𝑁+1)|| . (42)

A high value of dig indicates fast convergence and thus regular motion. Low values suggest chaos, though comparisons between 
chaotic orbits are not meaningful in the Lyapunov sense.

To calculate dig, we use the dig method of the DiscreteDynamicalSystem class from pynamicalsys:

1 obj.dig(u, total_time , parameters=None , func=lambda x: np.cos(2 * np.pi * x[:, 0], transient_time=None)

Here, func corresponds to the function 𝑓 discussed above. By default, it uses 𝑓 (𝑥) = cos (2𝜋𝑥) [Fig.  7(a)]. To use a different 
function, let us say 𝑓 (𝑥) = sin (2𝜋𝑥) [Fig.  7(b)] or 𝑓 (𝑥, 𝑦) = sin (2𝜋(𝑥 + 𝑦)) [Fig.  7(c)], we can pass a different lambda function to 
the dig method: func=lambda x: sin(2 * np.pi * x[:, 0]) or func=lambda x: sin(2 * np.pi * (x[:, 0] + y[:, 0])), for instance. The 
following code snippet illustrates the calculation of dig using these three functions 𝑓 :
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Fig. 7. Demonstration of the use of the dig method of the DiscreteDynamicalSystem class of pynamicalsys to calculate dig for a grid of 
uniformly distributed initial conditions for the standard map [Eq. (1)] with 𝑘 = 1.5 and for the functions (a) 𝑓 (𝑥) = cos (2𝜋𝑥), (b) 𝑓 (𝑥) = sin (2𝜋𝑥), 
and (c) 𝑓 (𝑥, 𝑦) = sin [2𝜋(𝑥 + 𝑦)]. Execution times: (a) 8.66 s, (b) 8.76 s, and (c) 8.79 s.

1 >>> import numpy as np
2 >>> from pynamicalsys import DiscreteDynamicalSystem as dds
3 >>> ds = dds(model="standard map")
4 >>> grid_size = 1000 # Size of the grid in phase space
5 >>> x = np.linspace (0, 1, grid_size) # Create the grid
6 >>> y = np.linspace (0, 1, grid_size)
7 >>> X, Y = np.meshgrid(x, y)
8 >>> u = np.array ([X.flatten (), Y.flatten ()]).T
9 >>> k = 1.5 # Parameter of the map
10 >>> total_time = 10000 # Total iteration time
11 >>> dig = [ds.dig(u[i], total_time, parameters=k) for i in range(u.shape [0])]
12 >>> function_b = lambda x: np.sin(2 * np.pi * x[:, 0])
13 >>> dig2 = [ds.dig(u[i], total_time, parameters=k, func=function_b) for i in range(u.shape [0])]
14 >>> function_c = lambda x: np.sin(2 * np.pi * (x[:, 0] + x[:, 1]))
15 >>> dig3 = [ds.dig(u[i], total_time, parameters=k, func=function_c) for i in range(u.shape [0])]

All functions 𝑓 are able to distinguish the regular and chaotic regions, the choice of this function is rather arbitrary, as long 
as it is sufficiently smooth, 𝐶∞, and maps into a finite-dimensional real vector space [86]. As expected, the quasiperiodic orbits 
exhibit a high value of dig, while chaotic orbits have a small value of dig. Since the weighted Birkhoff average does not improve the 
convergency of a chaotic orbit, we cannot compare two values of dig for two different chaotic orbits. For instance, we cannot say that 
an orbit with dig = 1 is ‘‘more chaotic’’ than one with dig = 2. Nevertheless, the weighted Birkhoff average can efficiently distinguish 
regular and chaotic regions, being simple and faster to compute. It helps the calculation of the dimension of the boundary of the 
chaotic sea and the islands [91], the classification of regions in a drift 𝐄 × 𝐁 model [92], and can also be extended to flows [89].

3.4. Recurrence time entropy

The recurrence plot (RP) was introduced in 1987 by Eckmann et al. [93] as a graphical representation of the recurrences of time 
series of dynamical systems in its 𝑑-dimensional phase space. For a given trajectory 𝐱𝑖 ∈ R𝑑 (𝑖 = 1, 2,… , 𝑁) of length 𝑁 , the 𝑁 ×𝑁
recurrence matrix is defined as 

𝑅𝑖𝑗 = 𝐻
(

𝜖 − ‖𝐱𝑖 − 𝐱𝑗‖
)

, (43)

where 𝐻(⋅) is the Heaviside unit step function, 𝜖 is a small threshold, and ‖𝐱𝑖 − 𝐱𝑗‖ is the distance between states 𝐱𝑖 and 𝐱𝑗 in 
phase space measured in terms of a suitable norm. The most commonly used norms are the Euclidean norm and the maximum (or 
supremum) norm, defined as 

‖𝐱‖2 =
( 𝑑
∑

𝑖=1

|

|

𝑥𝑖||
2
)1∕2

,

‖𝐱‖∞ = max
𝑖

(

|

|

𝑥𝑖||
)

,

(44)

respectively. Both of these norms yield similar results. However, the maximum norm is computationally faster and it results in more 
recurrent points for a fixed threshold 𝜖 [94]. Therefore, the maximum norm is more commonly used.
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Fig. 8. Demonstration of the use of the recurrence_matrix method of the DiscreteDynamicalSystem class of pynamicalsys for three 
different initial conditions for the standard map [Eq. (1)] with 𝑘 = 1.5. Execution times: (a) 22.9ms and (b)–(d) 5.12ms.  (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.)

The recurrent states are represented by the value 1 in the symmetric, binary recurrence matrix 𝐑, whereas the nonrecurrent 
ones are represented by the value 0. Since it is numerically impossible to find exactly recurrent states, i.e., 𝐱𝑖 = 𝐱𝑗 , two states are 
said to be recurrent if they are sufficiently close to each other up to a distance 𝜖. The distance 𝜖 has to be carefully chosen. If 𝜖
is set too large, nearly every state is recurrent with every other state. On the other hand, if 𝜖 is chosen too small, there will be 
few recurrent states. Hence, a compromise has to be made between choosing 𝜖 as small as possible while resulting in a sufficient 
number of recurrent states. There is no general rule on choosing 𝜖. However, a few options have been proposed in the literature 
and each one of them has its own advantages and disadvantages depending on the purpose of the study. For instance, an alternative 
is to choose 𝜖 such that the recurrence point density, i.e., the recurrence rate, is fixed [95,96]. While this eliminates the issue of 
obtaining few recurrent states, it only shifts the problem to finding the optimal value of the recurrence rate. Another possibility is to 
define 𝜖 as a fraction of the time series standard deviation [94,97,98]. This has been proved efficient when distinguishing between 
dynamical regimes and analyzing dynamical transition [51,52,99,100].

Graphically, the recurrent states are represented by a colored dot and the recurrence matrix exhibits different patterns depending 
on the dynamics of the underlying system. These patterns are composed of mainly four distinct structures. They are (i) isolated 
recurrence points, (ii) diagonal lines, (iii) vertical lines, and (iv) white (non-recurrent) vertical lines. The recurrence matrix can be 
calculated using the recurrence_matrix method of the DiscreteDynamicalSystem class from pynamicalsys:

1 obj.recurrence_matrix(u, total_time , parameters=None , transient_time=None , ** kwargs)

This method, given an initial condition 𝐮 ∈ R𝑑 , stored in the array u, returns the recurrence matrix 𝐑 ∈ R𝑑×𝑑 . The optional 
arguments include metric, which defines which norm to use. By default, the recurrence_matrix method uses the supremum 
norm (metric="supremum"). The method also supports the Euclidean norm metric="euclidean" and the Manhattan norm 
(𝐿1 norm) metric="manhattan". The threshold 𝜖 setting is done via the threshold optional argument. By default, it is set to 
threshold=0.1. Additionally, the optional argument threshold_std determines whether to use the threshold in units of the 
standard deviation of the trajectory generated by the initial condition u. By default, it is set to threshold_std=True. In this case, 
threshold=0.1 means 10% of the trajectory’s standard deviation. Regarding the standard deviation, for a one-dimensional system, 
it is simply the standard deviation of the whole trajectory. However, for higher-dimensional systems, we define a standard deviation 
vector where each component contains the standard deviation of the corresponding component of the trajectory: 

𝝈 = (𝜎1, 𝜎2,… , 𝜎𝑑 )𝑇 , (45)

where 𝜎𝑖 = std(𝐱𝑖). Then, we define the standard deviation of the trajectory as the norm of the standard deviation vector 𝝈
(supremum, Euclidean, or Manhattan) using the optional argument std_metric (default is std_metric="supremum").

The following code calculates the recurrence matrix for three different initial conditions for the standard map [Eq. (1)] using 
10% of the trajectories’ standard deviation as the threshold [Fig.  8(b)–(d)]:

1 >>> from pynamicalsys import DiscreteDynamicalSystem as dds
2 >>> ds = dds(model="standard map")
3 >>> u = [[0.05, 0.05], [0.35, 0.0], [0.42, 0.2]] # Initial conditions
4 >>> k = 1.5 # Parameter of the map
5 >>> total_time = 1000 # Total iteration time
6 >>> recmats = [ds.recurrence_matrix(u[i], total_time, parameters=k) for i in range(len(u))]
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Fig.  8(a) shows the trajectories for three distinct initial conditions, namely, (red) (𝑥, 𝑦) = (0.05, 0.05), (green) (𝑥, 𝑦) = (0.35, 0.0), 
and (blue) (𝑥, 𝑦) = (0.42, 0.2). The first one is an initial condition in the bulk of the chaotic sea and the second one is inside of an 
island. The third one, however, is an initial condition located at the sticky region around the period-6 islands. For the first iterations, 
this initial condition remains trapped inside the sticky region, hence a high density of blue points around the period-6 islands. Fig. 
8(b)–(d) show the recurrence matrices for the initial conditions in Fig.  8(a). The recurrence matrix for the chaotic orbit [Fig.  8(b)] 
exhibits few diagonal lines while the recurrence matrix for the quasiperiodic orbit [Fig.  8(c)] is composed mainly of diagonal lines. 
The recurrence matrix for the sticky orbit [Fig.  8(d)], on the other hand, is not as regular as the quasiperiodic one but is more regular 
than the chaotic one. The recurrence matrix can also be calculated using only a given time series with the recurrence_matrix 
method of the TimeSeriesMetrics of pynamicalsys (see the documentation).

Therefore, the RPs of different dynamical processes are qualitatively different. In order to quantify the structures in RPs, several 
measures based on the diagonal and vertical lines have been proposed, such as the determinism and the laminarity, for instance. 
For a complete discussion on these and other measures, we refer the reader to Refs. [94,101–106] and references therein. Measures 
based on the white vertical lines, i.e., the vertical distance between two diagonal lines, have also been proposed [51,96,99,100]. 
The white vertical lines of an RP are an estimate of the return times of the corresponding trajectory [107–109], which is the time 
an orbit takes to return to the neighborhood of a previous point on the orbit. The RP for the chaotic orbit [Fig.  8(b)] shows no 
regularity in the vertical distances between the diagonal lines while the RP of the quasiperiodic process [Fig.  8(c)] consists diagonal 
lines with different distances between them. The vertical distances in the RP of the sticky orbit [Fig.  8(d)], on the other hand, 
are more regular than the chaotic case but it is not as regular as the quasiperiodic case. Thus, the RP of the sticky orbit has an 
intermediate complexity when compared to the RP of the quasiperiodic and chaotic ones.

Now, quasiperiodic processes yield three return times. This fact is stated by Slater’s theorem [110–112]: for any irrational 
rotation, with rotation number 𝜔, over a unit circle, there are at most three different return times to a connected interval of 
size 𝛿 < 1. Additionally, the third return time is the sum of the other two, and two of these three return times are consecutive 
denominators in the continued fraction expansion of 𝜔. Slater’s theorem has been applied to study two-dimensional, area-preserving 
mappings [113,114] as well as to study the parameter space of a one-dimensional mapping [54]. It has also been employed to locate 
the position in phase space of invariant curves in Hamiltonian systems as well as to find the critical parameter values at which these 
curves break up [115–117].

Therefore, due to the intrinsic property of dynamical systems that quasiperiodic dynamics result in three recurrence times, 
measures based on the distribution of recurrence times are excellent alternatives to the characterization of the dynamics. We 
introduce, then, the recurrence time entropy (RTE), i.e., the Shannon entropy of the distribution of white vertical lines (recurrence 
times), estimated from the RP. Formally, the total number of white vertical lines of length 𝓁 is given by the histogram 

𝑃 (𝓁) =
𝑁
∑

𝑖,𝑗=1
𝑅𝑖,𝑗−1𝑅𝑖,𝑗+𝓁

𝓁−1
∏

𝑘=0
(1 − 𝑅𝑖,𝑗+𝑘), (46)

such that the RTE is defined as [96] 

RTE = −
𝓁max
∑

𝓁=𝓁min

𝑝(𝓁) log 𝑝(𝓁), (47)

where 𝓁min (𝓁max) is the length of the shortest (longest) white vertical line, 𝑝(𝓁) = 𝑃 (𝓁)∕  is the relative distribution of white 
vertical lines of length 𝓁 and   is the total number of white vertical line segments. The evaluation of the histogram given by 
Eq. (46) should be done carefully. Due to the finite size of an RP, the distribution of white vertical lines might be biased by the 
border lines, i.e., the lines that begin and end at the borders of an RP. These lines are cut short by the borders of the RP and their 
length is measured incorrectly. This influences measures such as the RTE [118]. To avoid such border effects, we exclude from the 
distribution the white vertical lines that begin and end at the border of the RP.

Originally, the RTE was introduced with no connections to RPs [119], and it has been shown that it provides a good estimate 
for the Kolmogorov–Sinai entropy [120]. The RTE has also been successfully applied to detect sticky regions in two-dimensional, 
area-preserving mappings [51,52] and to detect dynamical transitions in a fractional cancer model [121]. A periodic orbit, which 
has only one return time, yields RTE = 0. A quasiperiodic orbit, which has three return times, is characterized by a low value of 
RTE, whereas a chaotic orbit leads to a high value of RTE. Since the RP of a sticky orbit has an intermediate complexity, the RTE 
for such an orbit is smaller than the chaotic case but larger than the quasiperiodic case.

The RTE is the only recurrence-based measure implemented in pynamicalsys. That is not the aim of the package. We have 
chosen to implement the RTE due to its ability to detect different hierarchical levels in the islands-around-islands structure in 
two-dimensional, area-preserving maps and for being able to detect dynamical transitions [51,52,121]. For a complete package on 
RQAs, we refer the reader to the pyunicorn package [122].

To calculate RTE, we use the recurrence_time_entropy method of the DiscreteDynamicalSystem class of our package 
pynamicalsys:

1 obj.recurrence_time_entropy(u, total_time , parameters=None , transient_time=None , ** kwargs)

It returns the RTE for the given initial conditions. The optional arguments include the metric, threshold, threshold_std, 
and std_metric we have discussed already. It also includes the lmin, which corresponds to the 𝓁min value in Eq. (47) (default 
is lmin=1). The recurrence_time_entropy method can also return the final state (set return_final_state=True), the 
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Fig. 9. (a) Demonstration of the use of the recurrence_time_entropy method of the DiscreteDynamicalSystem class of pynamicalsys 
to calculate the RTE as a function of the parameter 𝑘 of the standard map [Eq. (1)] and (b) and (c) demonstration of the use the 
finite_time_recurrence_time_entropy method of the DiscreteDynamicalSystem class of pynamicalsys to calculate the distribution 
of finite-time RTE for the standard map with 𝑘 = 1.5. Execution times: (a) 19.2 s, (b) 804ms, and (c) 35.2 s.

recurrence matrix used in the RTE calculation (set return_recmat=True), and the distribution of white vertical lines 𝑝(𝓁) (set 
return_p=True).

The following code demonstrates how to calculate the RTE for the standard map [Eq. (1)] as a function of the nonlinearity 
parameter 𝑘 [Fig.  9(a)]:

1 >>> import numpy as np
2 >>> from pynamicalsys import DiscreteDynamicalSystem as dds
3 >>> ds = dds(model="standard map")
4 >>> u = [0.5, 0.25] # Initial condition
5 >>> k_range = (0, 5, 5000) # Interval in k
6 >>> k = np.linspace (* k_range) # Create the k values
7 >>> total_time = 5000 # Total iteration time
8 >>> rte = [ds.recurrence_time_entropy(u, total_time, parameters=k[i]) for i in range(k_range [2])]

Fig.  9(a) shows that the RTE distinguishes chaos and regularity successfully [cf. Fig.  5(a)]. And similarly to the LEs, the RTE can 
also be used to detect sticky orbits [51,52] by calculating the finite-time RTE, i.e., for a long trajectory of length 𝑁 (total_time), 
we calculate the RTE in windows of size 𝑛 ≪ 𝑁 (finite_time). We use the finite_time_recurrence_time_entropy method 
of the DiscreteDynamicalSystem class of pynamicalsys:
1 >>> obj.finite_time_recurrence_time_entropy(u, total_time , finite_time , parameter=None , return_points=False ,

↪ ** kwargs)

It returns an array of size 𝑀 = 𝑁∕𝑛 with the value of the finite-time RTE for each time window. The optional argu-
ments here include the metric, threshold, threshold_std, and std_metric and also the return_points. When set to 
return_points=True, the method also returns the initial conditions that generate the corresponding finite-time RTE value. The 
following code snippet illustrates the use of the finite_time_recurrence_entropy method to calculate the finite-time RTE 
distribution [Fig.  9(b) and (c)]:

1 >>> from pynamicalsys import DiscreteDynamicalSystem as dds
2 >>> ds = dds(model="standard map")
3 >>> u = [0.05, 0.05] # Initial condition
4 >>> k = 1.5 # Parameter of the map
5 >>> total_time = 100000000 # Total iteration time
6 >>> finite_time = 200 # Finite time
7 >>> ftrte, points = ds.finite_time_recurrence_time_entropy(u, total_time, finite_time, parameters=k,

return_points=True)

The distribution of the finite-time RTE is similar to the distribution of the finite-time Lyapunov exponent [Fig.  5(c)]. With the 
RTE, however, it is possible to detect more than one mode, i.e., the smaller mode in Fig.  5(c) is, in fact, composed of several smaller 
modes, as suggested by Harle and Feudel [123]. By inspecting the phase space positions that generate the smaller peaks in the 
distribution, we notice that smaller values of RTE are associated with inner levels in the hierarchical structure of islands-around-
islands [51,52]. The inset in Fig.  9(c) corresponds to the same windows of the inset in Fig.  5(c). We notice the sharp drops in the 
value of the finite-time RTE, which leads to the multi-modal distribution we see in Fig.  9(c).
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Fig. 10. (a) Demonstration of the use of the hurst_exponent method of the DiscreteDynamicalSystem class of pynamicalsys to 
calculate the Hurst exponent as a function of the parameter 𝑘 of the standard map [Eq. (1)] and (b) and (c) demonstration of the use the 
finite_time_hurst_exponent method of the DiscreteDynamicalSystem class of pynamicalsys to calculate the distribution of finite-
time 𝐻 for the standard map with 𝑘 = 1.5. Execution times: (a) 1min 9 s, (b) 2.78 s, and (c) 2min 11 s.

3.5. Hurst exponent

The Hurst exponent was introduced by H. E. Hurst in 1951 to model the cyclical patterns of the Nile floods [124] and is a key 
metric for assessing long-term memory in time series, revealing the extent to which data points are persistently or anti-persistently 
correlated over time. Several algorithms have been proposed to numerically estimate the Hurst exponent [125–128], however, the 
rescaled range analysis (R/S analysis) [124,129,130] has become the standard approach to its estimation. The approach is as follows: 
Given an 1-dimensional time series, 𝐱 = (𝑥1, 𝑥2,… , 𝑁) of length 𝑁 , we divide the time series into 𝜅 non-overlapping subseries of 
length 𝓁, {𝐏𝑘(𝓁)

}

𝑘=1,2,…,𝜅 , such that 𝜅 = 𝑁∕𝓁. For each subseries 𝐏𝑘(𝓁), we calculate the mean 𝜇𝑘(𝓁) and the deviation from the 
mean: 

𝐃𝑘(𝓁) = 𝐏𝑘(𝓁) − 𝜇𝑘(𝓁). (48)

Next, we calculate the cumulative sum of the deviations as 

𝑍𝑖,𝑘(𝓁) =
𝑖

∑

𝑗=1
𝐷𝑖,𝑘(𝓁), (49)

for 𝑖 = 1, 2,… ,𝓁, and the range of each cumulative sum subseries as 
𝑅𝑘(𝓁) = max𝐙𝑘(𝓁) − min𝐙𝑘(𝓁). (50)

Then, the mean of the rescaled ranges is calculated as 

(𝑅∕𝑆)𝓁 =
⟨

𝑅𝑘(𝓁)
𝑆𝑘(𝓁)

⟩

= 1
𝜅

𝜅
∑

𝑘=1

𝑅𝑘(𝓁)
𝑆𝑘(𝓁)

, (51)

where 𝑆𝑘(𝓁) is the standard deviation of the subseries 𝐏𝑘(𝓁). We then repeat the process considering a different value of 𝓁 and the 
Hurst exponent is estimated assuming a power-law relation between the rescaled ranges and the length of the subseries 𝓁: 

(𝑅∕𝑆)𝓁 ∼ 𝓁𝐻 , (52)

where 𝐻 is the Hurst exponent. The exponent 𝐻 is then estimated as the slope of the linear fit in the log–log plot of (𝑅∕𝑆)𝓁 versus 
𝓁, using the least squares method. Thus, 𝓁 ∈ [2, 𝑁∕2].

This procedure considers only a 1-dimensional time series. For a 𝑑-dimensional data, we simply apply it to each component 
of the time series, yielding a Hurst exponent vector 𝐇 ∈ R𝑑 . Depending on the problem we can analyze only one component of 
the Hurst exponent vector or consider its mean, for instance. The Hurst exponent can be calculated for a given discrete dynamical 
system using the hurst_exponent method of the DiscreteDynamicalSystem class from pynamicalsys:

1 obj.hurst_exponent(u, total_time , parameters=None , wmin=2, transient_time=None)

Here, wmin is the minimum length of each subseries and it is by default set to wmin=2. This method returns the Hurst exponent 
vector 𝐇 for higher-dimensional systems. To illustrate the calculation of the Hurst exponent, we consider the standard map [Eq. (1)] 
and calculate the Hurst exponent as a function of the parameter 𝑘 with initial condition (𝑥, 𝑦) = 0.5, 0.25 [Fig.  10(a)]:
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1 >>> import numpy as np
2 >>> from pynamicalsys import DiscreteDynamicalSystem as dds
3 >>> ds = dds(model="standard map")
4 >>> u = [0.5, 0.25] # Initial condition
5 >>> k_range = (0, 5, 5000) # Interval in k
6 >>> k = np.linspace (* k_range) # Create the k values
7 >>> total_time = 5000 # Total iteration time
8 >>> H = [ds.hurst_exponent(u, total_time, parameters=k[i]) for i in range(k_range [2])]

The Hurst exponent also distinguishes regularity from chaos accurately [cf. Figs.  5(a) and 9(a)]. The regular regions yield a low 
value of 𝐻 , while the chaotic regions exhibit a high value of 𝐻 , just below 0.5, which makes sense as 𝐻 = 0.5 indicates a random 
walk and a chaotic trajectory does not fall within this category.

Recently, Borin [131] has shown that the Hurst exponent is also an excellent tool for identifying and quantifying sticky orbits. By 
computing the Hurst exponent for a long chaotic trajectory of length 𝑁 (total_time) in windows of size 𝑛 ≪ 𝑁 (finite_time), 
it is possible to detect the different trappings around the hierarchical levels of the islands-around-islands structure. We use the 
finite_time_hurst_exponent method of the DiscreteDynamicalSystem class from pynamicalsys:

1 obj.finite_time_hurst_exponent(u, total_time , finite_time , parameters=None , wmin=2, return_points=False)

Similarly to the other finite-time methods (Lyapunov and RTE), this method returns an array of 𝑀 = 𝑁∕𝑛 rows with 𝑑 columns, 
where 𝑑 is the dimension of the system. The optional argument wmin is the minimum length of each subseries and return_points 
when set to True tells the method to also return the initial conditions that generated the corresponding finite-time Hurst exponent 
value. The following code snippet illustrates the use of the finite_time_hurst_exponent method for the calculation of the 
finite-time Hurst exponent distribution:

1 >>> from pynamicalsys import DiscreteDynamicalSystem as dds
2 >>> ds = dds(model="standard map")
3 >>> u = [0.05, 0.05] # Initial condition
4 >>> parameter = 1.5 # Parameter of the map
5 >>> total_time = 100000000 # Total iteration time
6 >>> finite_time = 200 # Finite time
7 >>> ftHE = ds.finite_time_hurst_exponent(u, total_time, finite_time, parameters=parameter)
8 >>> ftHE_avg = (ftHE[:, 0] + ftHE[:, 1]) / 2 # We use the average to calculate the distribution

The distribution of the finite-time Hurst exponent [Fig.  10(c)] is similar to the distribution of the finite-time RTE [Fig.  9(c)]. 
Both measures detect more than two modes and the Hurst exponent also distinguishes different trapping regions, as can be seen in 
Fig.  10(b). The inset shows the same sharp drops in the values of 𝐻(200), which yields the multi-modal distribution.

4. Manifolds: the skeleton of the dynamics

The stable and unstable manifolds are invariant geometric structures associated with saddle points of periodic orbits in dynamical 
systems. Given a discrete dynamical system 𝐱𝑛+1 = 𝐟 (𝐱𝑛), where 𝐟 ∶ R𝑑 → R𝑑 is a smooth map, let 𝐇 ∈ R𝑑 denote a hyperbolic fixed 
point (or a point on a hyperbolic periodic orbit) of 𝐟 . The stable manifold 𝑊 𝑠(𝐇) is defined as the set of points 𝐱 such that forward 
iterations under the map 𝐟 asymptotically approach 𝐇, i.e., 𝑊 𝑠(𝐇) =

{

𝐱 ∈ R𝑑 |

|

|

lim𝑛→∞ 𝐟𝑛(𝐱) = 𝐇
}

. Analogously, the unstable 
manifold 𝑊 𝑢(𝐇) consists of all points whose backward iterates converge to 𝐇, that is, 𝑊 𝑢(𝐇) =

{

𝐱 ∈ R𝑑 |

|

|

lim𝑛→−∞ 𝐟𝑛(𝐱) = 𝐇
}

 [132].
Both manifolds are invariant under the dynamics of 𝐟 . The manifolds cross each other transversely an infinite number of times, 

which generates an infinite but countable set of saddle points immersed in the chaotic region, this set is called chaotic saddle [133]. 
There are two types of intersections: homoclinic and heteroclinic. In the first case, the crossing is between the manifolds of the 
same hyperbolic point, while in the heteroclinic intersection, the manifolds of two distinct points cross each other [46]. Due to 
the invariance of these manifolds under the dynamics, all forward and backward iterates of a homoclinic point also belong to both 
manifolds. Consequently, the existence of a single homoclinic point implies the existence of an infinite number of such points. 
In Hamiltonian systems, where phase space volume is conserved (Liouville’s theorem), the stable and unstable manifolds cannot 
intersect transversely just once. Instead, their intersections typically form intricate structures known as homoclinic tangles.

The relationship between the homoclinic tangle and the chaotic motion was given by Smale [5], using the nonattractive set call 
Smale horseshoe 𝛬, a complete description of this can be found in [55]. The set 𝛬, associated with a Smale horseshoe, has the 
following properties: (i) includes a countable set of periodic orbits with arbitrarily large periods; (ii) an uncountable set of bounded 
aperiodic orbits; and (iii) at least one dense orbit is present. Birkhof [134] and later Smale [4] demonstrated that every homoclinic 
point is an accumulation point of a family of infinitely many periodic orbits. Since the number of homoclinic points is infinite, it 
follows that in the neighborhood of each homoclinic point, there exist infinitely many periodic points. This implies the existence of 
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an integer 𝑛 such that the 𝑛th iterate of the map exhibits a horseshoe structure 𝛬. Consequently, any orbit with an initial condition 
sufficiently close to a homoclinic tangle will have chaotic behavior.

To numerically compute the stable and unstable manifolds of a given hyperbolic fixed point or hyperbolic periodic orbit [135], 
we first need to compute the eigenvectors of the Jacobian matrix. For two-dimensional maps, the Jacobian matrix evaluated at the 
hyperbolic fixed point has two eigenvalues, one larger than one and one less than one: |

|

𝜆1|| > 1 > |

|

𝜆2||. The eigenvector with the 
largest eigenvalue, denoted by 𝐯𝑢, represents the unstable direction, while the eigenvector with the smallest eigenvalue, denoted by 
𝐯𝑠, represents the stable direction. We select a large number of initial conditions uniformly distributed along the unstable eigenvector 
𝐯𝑢 and its negative counterpart −𝐯𝑢, within a distance 𝛿 ≪ 1 from the hyperbolic point. We then iterate these points forward in 
time, resulting in the unstable manifold of the hyperbolic fixed point (or hyperbolic periodic orbit). The stable manifold is obtained 
similarly. We distribute the initial conditions along the stable eigenvector 𝐯𝑠 and its negative counterpart −𝐯𝑠 and iterate the initial 
conditions backward in time. This results in the stable manifold.

Assuming we know the coordinates of the hyperbolic fixed points or at least on point on a hyperbolic periodic orbit, we 
can compute the stable and unstable manifolds using the manifold method of the DiscreteDynamicalSystem class from 
pynamicalsys:

1 obj.manifold(u, period , parameters=None , delta=1e-4, n_points =100, iter_time =100, stability="unstable")

In this case, u represents the coordinates of the fixed point or periodic orbit, while period is the orbit’s period. The argument 
delta defines the distance from the fixed point where the initial conditions will be distributed. The arguments n_points and 
iter_time specify the number of points along the eigenvector and the number of iterations for each point, respectively. Finally, 
stability indicates whether to calculate the stable or unstable manifold.

However, before calculating the manifolds, we need to find and classify the fixed points and periodic orbits. The standard map 
[Eq. (1)] has two fixed points: (0, 0) and (0.5, 0.0). We can analyze their stability analytically. The Jacobian matrix for the standard 
map is 

𝐽 (𝑥, 𝑦) =
(

1 + 𝑘 cos (2𝜋𝑥) 1
𝑘 cos (2𝜋𝑥) 1

)

. (53)

For area-preserving maps, such as the standard map, the stability of the fixed points and periodic orbits can be estimated using their 
residue [136,137]: 

𝑅(𝑥, 𝑦) = 1
4
[2 − Tr(𝐽 𝑝(𝑥, 𝑦))], (54)

where 𝐽 (𝑥, 𝑦) is the Jacobian matrix, Tr(⋅) is the trace, and 𝑝 is the period of the orbit. An elliptic orbit has 𝑅 ∈ (0, 1), and a parabolic 
orbit has 𝑅 = 0 or 𝑅 = 1. The orbit is hyperbolic otherwise. Therefore, for the fixed point (0, 0), we have 𝑅(0, 0) = −𝑘∕4, which means 
the fixed point is hyperbolic regardless of the value of 𝑘. For the other fixed point, we have 𝑅(0.5, 0) = 𝑘∕4. Therefore, for 𝑘 ∈ (0, 4), 
the fixed point is elliptic. We can verify that using the classify_stability method of the DiscreteDynamicalSystem class 
from pynamicalsys:

1 obj.classify_stability(u, period , parameters=None)

Here, u is a list with the coordinates of the periodic orbit, parameters is a list with the parameters of the system, and period 
is the period of the periodic orbit. The below code snippet demonstrates the use of the classify_stability method for the two 
fixed points we have discussed:

1 >>> from pynamicalsys import DiscreteDynamicalSystem as dds
2 >>> ds = dds(model="standard map")
3 >>> period = 1 # Period of the orbit
4 >>> u = [0, 0] # Fixed point
5 >>> stability = ds.classify_stability(u, period, parameters =1.5)
6 >>> stability["classification"], stability["eigenvalues"]
7 (’saddle ’, array ([3.18614066+0. j, 0.31385934+0.j]))
8 >>> stability = ds.classify_stability(u, period, parameters =5.0)
9 >>> stability["classification"], stability["eigenvalues"]
10 (’saddle ’, array ([6.85410197+0. j, 0.14589803+0.j]))
11 >>> u = [0.5, 0] # Fixed point
12 >>> stability = ds.classify_stability(u, period, parameters =1.5)
13 >>> stability["classification"], stability["eigenvalues"]
14 (’elliptic (quasi -periodic)’, array ([0.25 -0.96824584 j, 0.25+0.96824584j]))
15 >>> u = [0.5, 0]
16 >>> stability = ds.classify_stability(u, period, parameters =5.0)
17 >>> stability["classification"], stability["eigenvalues"]
18 (’saddle ’, array ([ -2.61803399+0. j, -0.38196601+0.j]))
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Fig. 11. Demonstration of the use of the find_periodic_orbit and manifold methods of the DiscreteDynamicalSystem class of 
pynamicalsys using the standard map [Eq. (1)] with 𝑘 = 1.5 as an example. The execution time for finding the period 2 saddle point using the 
2D search was 1.78 s. For the lower period 3 orbits (green points), the execution times were 228ms for the center and 225ms for the saddle using 
the 1D seach along a symmetry line. For the upper period 3 orbits (purple points), the execution times were 156ms for the center and 151ms for 
the saddle using the 1D seach along a symmetry line.  (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.)

Once we have determined the stability of the fixed points, we can calculate the manifolds as follows:

1 >>> saddle = [0, 0]
2 >>> period = 1
3 >>> k = 1.5
4 >>> n_points = 50000
5 >>> iter_time = 12
6 >>> wu = ds.manifold(saddle, period, parameters=k, n_points=n_points, iter_time=iter_time, stability="

unstable")
7 >>> ws = ds.manifold(saddle, period, parameters=k, n_points=n_points, iter_time=iter_time, stability="stable

")

The manifolds of the hyperbolic fixed point are displayed in maroon (unstable) and red (stable) in Fig.  11.
Sometimes it is very difficult or even impossible to find the periodic orbits analytically, especially for higher periods. In this 

case, we can use the find_periodic_orbit method of the DiscreteDynamicalSystem class from pynamicalsys to perform 
a two-dimensional scan of a region in phase space where a periodic orbit might be present:

1 obj.find_periodic_orbit(grid_points , period , parameters=None , tolerance =1e-5, max_iter =1000,
↪ convergence_threshold =1e-15, tolerance_decay_factor =0.5, verbose=False , symmetry_line=None , axis=None
↪ )
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This method locates a periodic orbit within a specified region of phase space using an iterative grid refinement strategy. The input 
grid_points is a three-dimensional array of shape (grid_size_x, grid_size_y, 2) representing a mesh of initial conditions 
in phase space. The method identifies periodic points by evolving each initial condition for a fixed number of steps defined by the 
period argument and checking whether the trajectory returns within a specified tolerance of its starting point. This tolerance 
acts as a numerical threshold, effectively defining the neighborhood within which a return is considered periodic. If periodic points 
are detected, their minimum and maximum positions are used to define a new, smaller region of phase space. The grid is then 
refined within this updated region, and the process repeats. The refinement continues until either the position of the orbit converges 
to within a specified convergence_threshold or the maximum number of iterations given by max_iter is reached. At each 
iteration, the tolerance is decreased according to the tolerance_decay_factor argument and if convergence is detected earlier, 
the process halts before reaching the maximum iteration count. By default, the method does not print any information to the user. 
However, by setting verbose=True, the method will print the convergence information at each refinement iteration.

Even though this is an efficient method, the search can be improved by using the symmetries of the map to reduce the 2D search 
to finding the root of a function of one variable [137]. If a map, denoted by 𝑀 , is reversible, then it can be written as a product of 
two involutions: 

𝑀 = 𝐼2◦𝐼1, (55)

where an involution is a map such that 𝐼(𝐼(𝐱)) = 𝐱, i.e., 𝐼2 = 𝐼◦𝐼 = 1. The symmetry lines correspond to the fixed point sets of 
involutions, that is, the set of points where 𝐼(𝐱) = 𝐱. For example, the standard can be written in the form of Eq. (55) using 

𝐼1 =
(

−𝑥, 𝑦 + 𝑘
2𝜋

sin (2𝜋𝑥)
)

,

𝐼2 = (𝑥 − 𝑝,−𝑝).
(56)

A point (𝑥∗, 𝑦∗) is on the symmetry line of 𝐼1 if it satisfies 𝐼1(𝑥∗, 𝑦∗) = (𝑥∗, 𝑦∗). We get 
− 𝑥∗ = 𝑥∗ mod 1,

sin
(

2𝜋𝑥∗
)

= 0.
(57)

Thus, the fixed set of 𝐼1 is {(𝑥, 𝑦) ∣ 𝑥 = 0 or 1∕2 ∀ 𝑦}. These are the vertical lines at 𝑥 = 0 and 𝑥 = 0.5. Using 𝐼2 we find the 
horizontal line at 𝑦 = 0. Note, however, that these are not the only symmetry lines. By using different involutions that satisfy 
Eq. (55), it is possible to find more symmetry lines [138].

Let us assume, for instance, that a symmetry line has the form 𝑦(𝑥) = 𝑓 (𝑥,𝐩), where 𝐩 = (𝑝1, 𝑝2,…) denotes the pa-
rameters of the system. Then, it is possible to define a function that takes on the coordinate 𝑥 and the system’s parameters: 
y = symm_line(x, parameters) and pass it to the find_periodic_orbit method via symmetry_line=symm_line. It is 
also necessary to define the axis of the symmetry line. In this case, axis=0. If, however, the symmetry line has the form 
𝑥(𝑦) = 𝑔(𝑦,𝐩), the procedure is analogous: the symmetry line function should be defined as x = symm_line(y, parameters) 
and symmetry_line=symm_line and axis=1.

For instance, to find the elliptic periodic orbit of period 2 of the standard map for 𝑘 = 1.5 (see Fig.  1 for reference), we can 
perform the search along the vertical line 𝑥 = 0.0:

1 >>> import numpy as np
2 >>> symmetry_line = lambda y, parameters: 0.0 * np.ones_like(y)
3 >>> k = 1.5
4 >>> period = 2
5 >>> y_range = (0.4, 0.6, 1000)
6 >>> y = np.linspace (* y_range)
7 >>> tolerance = 2 / len(y) # Initial tolerance for period detection
8 >>> periodic_orbit = ds.find_periodic_orbit(y, period, parameters=k, tolerance=tolerance, symmetry_line=

symmetry_line, axis=1, verbose=False)
9 >>> periodic_orbit
10 array ([0. , 0.5])
11 >>> stability = ds.classify_stability(periodic_orbit, period, parameters=k)
12 >>> stability["classification"], stability["eigenvalues"]
13 (’elliptic (quasi -periodic)’, array ([ -0.125 -0.99215674 j, -0.125+0.99215674j]))

Now, for the hyperbolic periodic orbit, we know that it is somewhere in between the two period 2 islands (Poincaré–Birkhoff 
theorem). So instead of trying to find another symmetry line to find these points, we perform a two-dimensional search within the 
region (𝑥, 𝑦) ∈ [0.1, 0.3] × [0.3, 0.55]:

1 >>> k = 1.5
2 >>> period = 2
3 >>> grid_size = 1000
4 >>> tolerance = 2 / grid_size # Initial tolerance for period detection
5 >>> x_range = (0.1, 0.3, grid_size) # Limits of the rectangular region
6 >>> y_range = (0.3, 0.5, grid_size)
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7 >>> x = np.linspace (* xrange) # Generate a grid of points in the rectangular region
8 >>> y = np.linspace (* yrange)
9 >>> X, Y = np.meshgrid(x, y) # Create a meshgrid of points in the rectangular region
10 >>> grid_points = np.empty (( grid_size, grid_size, 2)) # 3D array of points in the rectangular region
11 >>> grid_points [:, :, 0] = X
12 >>> grid_points [:, :, 1] = Y
13 >>> periodic_orbit = ds.find_periodic_orbit(grid_points, period, parameters=k, tolerance=tolerance)
14 >>> periodic_orbit
15 array ([0.19397649, 0.38795298])
16 >>> stability = ds.classify_stability(periodic_orbit, period, parameters=k)
17 >>> stability["classification"], stability["eigenvalues"]
18 (’saddle ’, array ([4.09176343+0. j, 0.24439341+0.j]))

The calculation of the manifolds is similar to the period 1 case and Fig.  11 shows the fixed points and periodic orbits up to 
period three and also the stable and unstable manifolds of the saddles. The data of the figure has been generated using the methods 
we have discussed in this section. We have chosen, however, not to display all the code in this paper due to its size, and we refer 
the reader to the Supplementary Material for further details.

5. Escape analysis

In this section, we discuss the escape dynamics in discrete dynamical systems using pynamicalsys. In general, escape dynamics 
describes the statistical behavior of a collection of trajectories that leave a bounded region in phase space or escape through exits 
or holes present in the system. The analysis of the escape dynamics is essential to understanding the dynamical behavior of the 
system as it exhibits different statistical properties depending on the underlying dynamics. When two or more exits are present in 
the system, one can construct escape basins to analyze the uncertainty associated with the dynamical behavior. This approach is 
analogous to the basins of attraction in dissipative systems that have more than one attractor. Therefore, in general, we talk about 
escape basins in Hamiltonian systems, which preserve volume in phase space and thus cannot have attractors and basins of attraction 
in dissipative systems. This, however, does not prevent us from studying escape in dissipative systems.

For open systems, such as the Hénon map [53] or the Hénon–Heiles system [139], the definition of escape is natural: the trajectory 
has escaped when it leaves toward infinity [140–144]. In closed systems, however, it is necessary to introduce exits in the system. 
This is a classical approach, especially for Hamiltonian systems [52,145–149]. When the dissipative system has more than one 
attractor or the open system has more than one exit, the corresponding basins are divided by a basin boundary that can be either 
a smooth curve or a fractal curve. Smooth boundaries are related to regular dynamics, whereas fractal boundaries are a classical 
characteristic of chaotic dynamics. Additionally, fractal boundaries decrease the predictability of the final state [150–152], i.e., to 
which basin the initial condition belongs. For a complete review of fractal boundaries in dynamical systems, we refer the reader to 
Ref. [153] and references therein.

5.1. Survival probability

The escape times, i.e., the time it takes for a trajectory to escape through one of the exits also tell us important information 
regarding the underlying dynamics. Given the escape time, we compute the survival probability, 𝑃 (𝑛), that corresponds to the 
fraction of initial conditions that have not escaped until the 𝑛th iteration. It is defined as, 

𝑃 (𝑛) =
𝑁surv(𝑛)

𝑀
, (58)

where 𝑀 is the total number of initial conditions and 𝑁surv is the number of initial conditions that have not escaped until the 𝑛th 
iteration. In a hyperbolic and strongly chaotic system, the survival probability decays exponentially as 𝑃 (𝑛) ∼ exp(−𝜅𝑛), where 𝜅 is 
known as the escape rate. However, in Hamiltonian systems, the existence of trapping regions leads to a slower escape rate: instead 
of an exponential decay, then the decay can be a power-law [154] or a stretched exponential [143].

To illustrate this feature, we consider the Leonel map [155,156], defined as 
𝑦𝑛+1 = 𝑦𝑛 + 𝜖 sin

(

𝑥𝑛
)

,

𝑥𝑛+1 = 𝑥𝑛 +
1

|

|

𝑦𝑛+1||
𝛾 mod 2𝜋,

(59)

where 𝜖 > 0 is the nonlinearity parameter and 𝛾 > 0 controls the speed of the divergence of the 𝑥 coordinate in the limit 𝑦 → 0. 
This mapping has the interesting feature of exhibiting chaotic regions for small, but nonzero, perturbation values (𝜖 ≪ 1) due to the 
divergent behavior of the second term in the 𝑦 equation. For small values of 𝑦, 1∕|𝑦|𝛾 → ∞ and 𝑥𝑛+1 and 𝑥𝑛 becomes uncorrelated, 
thus generating chaotic behavior. As 𝑦 increases, becomes slower and slower, and regular regions can be found in phase space [ Fig. 
12(a)]. The transition from integrability (𝜖 = 0) to non-integrability (𝜖 ≠ 0) has been investigated for this system and researchers 
have shown that the transition is characterized by a second-order phase transition. Additionally, the diffusion of chaotic orbits in 
the system is scaling invariant, i.e., the diffusion can be characterized by a homogeneous function of the parameters 𝜖 and 𝛾. By 
introducing symmetric exits, located at the horizontal lines 𝑦 = ±𝑦esc, one can show that the survival probability is also scaling 
invariant as long as the phase space region (𝑥, 𝑦) ∈ [0, 2𝜋] × [−𝑦 , 𝑦 ] does not contain any stability islands [157].
esc esc
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Fig. 12. Demonstration of the use of the escape_analysis with escape="exiting" and survival_probability methods of the 
DiscreteDynamicalSystem class of pynamicalsys for the Leonel map [Eq. (59)] for different escape regions defined by 𝑦esc. Execution 
times (a) 378ms and (b) 7min 54 s.

The escape analysis can be done using the escape_analysis method from the DiscreteDynamicalSystem class of
pynamicalsys:

1 obj.escape_analysis(u, max_time , exits , parameters=None , escape="entering", hole_size=None)

Here, the argument max_time determines the maximum iteration time to check for escape. If this time is reached and the 
trajectory has not escaped, the simulation is stopped. The argument exits defines the exits of the system. The shape of this argument 
depends on the escape argument. If escape="entering", it means that the trajectories escape upon entering a predefined region, 
i.e., by reaching a hole in the system. However, if the escape happens when trajectories leave a predefined region, such as in our 
current example, then this argument should be set to escape="exiting". The argument hole_size defines the size of the hole 
when escape="entering".

Here, we focus on escape="exiting" and we discuss the other case in Section 5.2. The argument exits defines the boundaries 
of the 𝑑-dimensional phase-space box and has the format where each sublist specifies the lower and upper bounds along one 
coordinate axis. The escape_analysis method returns two values: escape_side, which indicates the side through which the 
trajectory escaped (with -1 meaning no escape was detected), and escape_time, which is the time it took for the trajectory to 
escape (equal to max_time if no escape occurred). In general, escape can happen through any side of the box: 0 (1) corresponds to 
the left (right) side, 2 (3) to the bottom (top), and the pattern continues in higher dimensions. In the specific example considered 
here, the 𝑥 direction is periodic, so if we define exits = [[0, 2 * np.pi], [-y_esc, y_esc]], escape can only occur in the 𝑦
direction. Escapes through the 𝑥 boundaries (i.e., escape_side=0 for 𝑥 < 0 or escape_side=1 for 𝑥 > 2𝜋) are excluded due to 
the periodicity in 𝑥.

1 exits = [[x_ini , x_end], [y_ini , y_end], [z_ini , z_end]]

The following code snippet demonstrates the use of the escape_analysis method. It calculates the escape and survival 
probability for different 𝑦esc for random initial conditions defined in the interval (𝑥, 𝑦) ∈ [0, 2𝜋] × [−1 × 10−14, 1 × 10−14] [Fig.  12(b)]:

1 >>> import numpy as np
2 >>> from pynamicalsys import DiscreteDynamicalSystem as dds
3 >>> ds = dds(model="leonel map")
4 >>> ds.info["parameters"]
5 ["eps", "gamma"]
6 >>> eps, gamma = 1e-3, 1.0 # Define the parameters
7 >>> parameters = [eps, gamma]
8 >>> max_time = 1000000 # Maximum time
9 >>> num_ic = 1000000 # Number of initial conditions
10 >>> np.random.seed (13) # Seed for reproducibility
11 >>> x_range = (0, 2 * np.pi, num_ic) # Limits in x for the initial conditions
12 >>> y_range = (-1e-14, 1e-14, num_ic) # Limits in y for the initial conditions
13 >>> x = np.random.uniform (* x_range) # Create the random initial conditions
14 >>> y = np.random.uniform (* y_range)
15 >>> y_esc = np.logspace(np.log10(1e-3), np.log10 (0.025), 25) # Define the escape region
16 >>> x_esc = (0, 2 * np.pi)
17 >>> sp, times = [], [] # Empty list to store the survival probability and times
18 >>> for i in range(len(y_esc)):
19 ... exit = np.array ([[ x_esc [0], x_esc [1]], [-y_esc[i], y_esc[i]]])
20 ... escape = [ds.escape_analysis ([x[j], y[j]], max_time, exit, parameters=parameters, escape="exiting")

for j in range(num_ic)]
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Fig. 13. Demonstration of the use of the escape_analysis method with escaping="entering" for the Weiss map [Eq. (60)] with different 
values of 𝑘, namely, (a) 𝑘 = 0.50, (b) 𝑘 = 0.55, (c) 𝑘 = 0.60, and (d) 𝑘 = 0.70. Execution time (total): 3min 39 s.

21 ... escape = np.array(escape, dtype=np.int32)
22 ... time, survival_probability = ds.survival_probability(escape [:, 1], escapes[i, :, 1]. max())
23 ... sp.append(survival_probability)
24 ... times.append(time)

The exponential decay is evident for almost all survival probability curves. The last three curves, i.e., the largest 𝑦esc values, 
exhibit a small power-law tail for large values of 𝑛. This is characteristic of systems that exhibit the stickiness effect.

5.2. Escape basins

Due to the strong sensitivity to initial conditions, chaotic systems often exhibit escape basins with an intertwined pattern and 
fractal basin boundaries. We exemplify this with a two-dimensional, area-preserving nontwist map, which describes the advection 
of passive scalars [158,159]. The map is defined by the following equations: 

𝑦𝑛+1 = 𝑦𝑛 − 𝑘 sin (𝑥𝑛),

𝑥𝑛+1 = 𝑥𝑛 + 𝑘
(

𝑦2𝑛+1 − 1
)

mod 2𝜋,
(60)

where, 𝑘 > 0 is the nonlinearity parameter. This map is called nontwist due to the violation of the twist condition 𝜕𝑥𝑛+1∕𝜕𝑦𝑛 ≠ 0. 
Indeed, by calculating this derivative, we obtain 

𝜕𝑥𝑛+1
𝜕𝑦𝑛

= 2𝑘𝑦𝑛+1. (61)

The twist condition is violated for 𝑦𝑛+1 = 0. Nontwist systems exhibit nonmonotonic rotation number profiles, which leads to 
the phenomenon of degeneracy, i.e., two or more distinct stability islands with the same rotation number. For the Weiss map, due 
to the quadratic dependence of 𝑥𝑛+1 on 𝑦𝑛, there are two sets of islands with the same rotation number [160].

Additionally, nontwist systems exhibit a robust transport barrier, called the shearless curve. The shearless curve corresponds 
to a local extremum of the rotation number profile and it prevents global transport: it divides the phase space into two distinct 
and unconnected domains. Numerous studies on the breakup of the shearless curve have been done and we refer the reader to 
Refs. [149,161–168] and references therein for more details on two-dimensional, area-preserving nontwist systems.

Contrary to the approach we took on the previous section, now we introduce two holes of width 0.2 in the phase space of the 
system, centered at the points (𝑥, 𝑦) = (0.0,−1.1) and (𝑥, 𝑦) = (𝜋−0.1, 1.0) [160]. The exits argument now corresponds to the centers 
of the holes and the hole_size theirs the widths. Also, we must modify the escape argument: escape="entering". But first, 
we need to define the mapping function as this system is not built-in within the DiscreteDynamicalSystem class:

1 >>> import numpy as np
2 >>> from numba import njit
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3 >>> from pynamicalsys import DiscreteDynamicalSystem as dds
4 >>> @njit
5 >>> def weiss_map(u, parameters):
6 ... k = parameters [0]
7 ... x, y = u
8 ... y_new = y - k * np.sin(x)
9 ... x_new = (x + k * (y_new ** 2 - 1) + np.pi) % (2 * np.pi) - np.pi
10 ... return np.array ([ x_new, y_new])
11 >>> ds = dds(mapping=weiss_map, system_dimension =2, number_of_parameters =1)

To generate the escape basins in this case, we consider a 1000 × 1000 grid of initial conditions uniformly distributed on 
(𝑥, 𝑦) ∈ [−𝜋, 𝜋]2 and iterate each one of them up to 104 times. The following code snippet illustrates the calculation of the escape 
basins for four different values of 𝑘, namely, 𝑘 = 0.5, 𝑘 = 0.55, 𝑘 = 0.60, and 𝑘 = 0.70 (Fig.  13):

1 >>> import itertools
2 >>> centers = [[0.0, -1.1], [np.pi - 0.1, 1.0]]
3 >>> hole_size = 0.2
4 >>> grid_size = 1000
5 >>> ks = [0.5, 0.55, 0.60, 0.70]
6 >>> total_time = 10000
7 >>> x_range = (-np.pi, np.pi, grid_size)
8 >>> y_range = (-np.pi, np.pi, grid_size)
9 >>> X = np.linspace (* x_range)
10 >>> Y = np.linspace (* y_range)
11 >>> escapes = np.zeros((len(ks), grid_size, grid_size, 2))
12 >>> for i, k in enumerate(ks):
13 ... escape = []
14 ... for x, y in itertools.product(X, Y):
15 ... escape.append(ds.escape_analysis ([x, y], total_time, centers, parameters=k, hole_size=size_exit)

)
16 ... escape = np.array(escape).reshape(grid_size, grid_size, 2)
17 ... escapes[i, :, :, :] = escape

In this case, the first output of the escape_analysis method can only be -1, 0, or 1. If the initial condition has not reached one 
of the exits until 104 iterations, it returns −1 and we color the point green. If, however, the initial condition has reached the first 
(second) exit, it returns 0 (1) and we color the point yellow (blue). The first row of Fig.  13 corresponds to the escape basins while the 
second row corresponds to the escape times. For 𝑘 = 0.5, the shearless curve is still present in the phase space of the system, i.e., the 
blue and yellow basins do not mix. As we increase the perturbation, the shearless curve is broken and we observe an intermixing of 
the basins. To understand the effect of the parameter 𝑘 on the size of the basins, we can compute the basin stability [169], which 
is simply the relative proportion of each basin, Fig.  14(a). The stability of the green basin, which corresponds to the points that 
do not escape, for being in trapping regions or inside KAM islands, with the increase of the nonlinearity parameter these islands 
are broken, having the areas reduced leading to a decrease of the stability of this basin. The stability of the yellow and blue basins 
increases with the decrease of the regular regions, both basins present similar values for the basin stability, which indicate a strong 
mixing and intertwined basins.

To quantify the uncertainty of the final state caused by the fractal structure of the basin boundaries, we compute the basin entropy 
and boundary entropy as well as the dimension of the boundary using the uncertainty fraction method [150–152]. Regarding the 
basin entropy, the method was introduced by Daza et al. [170] and it consists of dividing the escape basin, characterized by the 
presence of 𝑁𝑒 distinguishable asymptotic states, into a fine mesh of 𝑁 ×𝑁 boxes. Each box contains a set of initial conditions that 
leads to a certain asymptotic state, which in our case can be escaping through one of the exits or never escaping. We label these 
asymptotic states from 1 to 𝑁𝑒. For each box 𝑖, we associate a probability 𝑝𝑖𝑗 of the asymptotic state 𝑗 to be present in the box and 
define the Shannon entropy of the 𝑖th box as 

𝑆𝑖 = −
𝑛𝑖
∑

𝑗=1
𝑝𝑖𝑗 log 𝑝𝑖𝑗 , (62)

where 𝑛𝑖 ∈ [1, 𝑁𝑒] is the number of asymptotic states present in the box. The total basin entropy is obtained by averaging over all 
boxes: 

𝑆𝑏 =
1
𝑁2

𝑁2
∑

𝑖=1
𝑆𝑖. (63)

The 𝑆𝑏 quantity is a measure of the complexity of the escape basin as a whole, with higher values indicating more complex 
basins. This methodology also allows us to compute the uncertainty of the final state associated with the basin boundary. To do 
this, we follow the same procedure to obtain Eq. (63), but considering only the 𝑁𝑏 boxes that contain more than one asymptotic 
state, i.e., those that intersect multiple basins. Then the basin boundary entropy is 

𝑆𝑏𝑏 =
1

𝑁2
∑

𝑆𝑖 =
𝑁𝑆𝑏 . (64)
𝑁𝑏 𝑖=1 𝑁𝑏
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Fig. 14. (a) The basin stability and (b) and (c) the demonstration of the use of the basin_entropy and uncertainty_fraction methods of 
the BasinMetrics class of pynamicalsys. Execution time: 2 h 2min 23 s.

A sufficient but not necessary condition for the boundary to be fractal is 𝑆𝑏𝑏 > log 2. If we consider the logarithm in the base 
2, this condition becomes 𝑆𝑏𝑏 > 1. Fractal boundaries are those with a non-integer value for their dimension. In our case, we have 
a two-dimensional basin and a smooth boundary is characterized by 𝑑 = 1, while a fractal boundary exhibits 𝑑 > 1. We compute 
the dimension of the boundary using the uncertainty fraction method [150–152]. Similarly to the basin entropy method, given an 
escape basin and an uncertainty 𝜖, for each point, we test whether small perturbations along each coordinate axis by 𝜖 remain in 
the same basin. Specifically, given a point (𝑥𝑖, 𝑦𝑖), we evaluate whether the perturbed points (𝑥𝑖 ± 𝜖, 𝑦𝑖) and (𝑥𝑖, 𝑦𝑖 ± 𝜖), one at a time, 
converge to the same asymptotic state as the reference point. If at least one of these four perturbed points belongs to a different 
basin, the reference point is classified as 𝜖-uncertain. The uncertainty fraction 𝑓 (𝜖) is defined as the ratio of 𝜖-uncertain points to 
the total number of points in the basin. By varying 𝜖, we obtain the dependence of 𝑓 (𝜖) on 𝜖.

For a smooth boundary, 𝑓 (𝜖) ∼ 𝜖, whereas for fractal boundaries the uncertainty fraction scales with 𝜖 as a power law: 𝑓 (𝜖) ∼ 𝜖𝛼 , 
where 𝛼 is the uncertainty exponent. The uncertainty exponent, 𝛼, and the dimension of the boundary, 𝑑, are related through the 
following equation [151]: 

𝑑 = 𝐷 − 𝛼, (65)

where 𝐷 is the dimension of the basin. In our case, 𝐷 = 2 and a fractal boundary is characterized by 𝛼 ∈ (0, 1).
Both entropies and the uncertainty fraction can be calculated using the basin_entropy and uncertainty_fraction methods, 

respectively, of the BasinMetrics class of pynamicalsys. To instantiate this class, you simply pass as an argument the 
two-dimensional array representing the basin you wish to quantify:

1 >>> basin = np.random.randint (1, 4, size =(1000, 1000)) # Example basin
2 >>> from pynamicalsys import BasinMetrics
3 >>> bm = BasinMetrics(basin)

The signatures of the methods are as follows:

1 obj.basin_entropy(n, log_base=np.e)
2 obj.uncertainty_fraction(x, y, epsilon_max =0.1, epsilon_min=None , n_eps =100)

In the basin_entropy method, the argument n specifies the size of each box in the 𝑁 × 𝑁 grid that covers the basin, and 
log_base sets the base of the logarithm used in the entropy calculation. This method returns a list containing the values of 𝑆𝑏 and 
𝑆𝑏𝑏.

In the uncertainty_fraction method, x and y are two-dimensional arrays that define the coordinates of the basin and must 
have the same shape as the basin. The arguments epsilon_max and epsilon_min specify the maximum and minimum values of 
the uncertainty 𝜖, in the same units as x and y. If epsilon_min is not provided, the method automatically determines an appropriate 
value based on the resolution of the basin. For instance, if the basin has a resolution of 0.001, setting epsilon_min below this value 
is not meaningful, and in general, it is recommended to omit this argument. The final argument, n_eps, determines the number 
of uncertainty values sampled between epsilon_min and epsilon_max. This method returns two arrays: the sampled values of 𝜖
and the corresponding values of the uncertainty fraction 𝑓 (𝜖). The uncertainty exponent, and consequently the dimension, can be 
obtained by performing a least-squares fit of log 𝜖 versus log 𝑓 (𝜖).
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In Fig.  14(b) and (c), we show the dependence of the basin entropy, 𝑆𝑏, and basin boundary entropy 𝑆𝑏𝑏, and the dimension 𝑑
on the parameter 𝑘. Immediately we notice that the boundary is fractal, i.e., 𝑑 > 1, for all values of 𝑘 while the fractality condition 
of 𝑆𝑏𝑏 > log2 2 is only satisfied for 𝑘 > 0.6. This is consistent with our expectations, as the latter condition is sufficient but not 
necessary for fractality, as previously discussed. We also note that, with a few exceptions where 𝑆𝑏, 𝑆𝑏𝑏, and 𝑑 oscillate, all quantities 
increase with 𝑘. This is also consistent with our expectations. As the nonlinearity parameter increases, the size of the stability islands 
diminishes and the basins become more and more mixed (Fig.  13). Moreover, for 𝑘 → 1, the dimension 𝑑 tends to 2 and 𝑆𝑏 and 
𝑆𝑏𝑏 become closer and closer. This is an indication of riddled basins [171], i.e., basins in which every neighborhood of a point in 
one basin contains points belonging to other basins, making the system extremely sensitive to initial conditions. In terms of the 
uncertainty fraction, a value of 𝑑 ≈ 2 implies 𝛼 ≈ 0. In other words, no matter how much we reduce the uncertainty 𝜖, the number 
of uncertain points does not decrease.

6. Continuous-time dynamical systems

6.1. System definition and basic simulation

All the examples so far were concerning discrete-time dynamical systems. In this section, we discuss how to use the
pynamicalsys package to analyze continuous-time systems. Similarly to the discrete-time system definition, we create our 
dynamical system object using the ContinuousDynamicalSystem class:
1 >>> from pynamicalsys import ContinuousDynamicalSystem as cds

The class takes on five arguments: model, equations_of_motion, jacobian, system_dimension, and
number_of_parameters. Analogously to the DiscreteDynamicalSystem class, it comes with a few built-in systems. To check 
all the built-in systems, run

1 >>> cds.available_models ()
2 [’lorenz system ’, ’henon heiles ’, ’rossler system ’, ’4d rossler system ’]

Thus, to create an object of the Lorenz system, given by the following equations 
𝑥̇ = 𝜎(𝑦 − 𝑥),

𝑦̇ = 𝑥(𝜌 − 𝑧) − 𝑦,

𝑧̇ = 𝑥𝑦 − 𝛽𝑧,

(66)

where 𝜎, 𝜌, and 𝛽 are the parameters of the system, you proceed as

1 >>> ds = cds(model="lorenz system")

In the case of continuous-time systems, one should also inform which numerical integrator one would like to use. Currently, the 
ContinuousDynamicalSystem class supports the 4th order Runge–Kutta method with fixed time step (RK4) and the Dormand–
Prince method with adaptive time step, which it a Runge–Kutta method of order 5 with an embedded method of order 4 (RK45). A 
detailed discussion of these methods is provided in the Appendix  B. To check the available integrators, run

1 >>> cds.available_integrators ()
2 [’rk4’, ’rk45’]

The numerical integrator is set using the integrator method from the ContinuousDynamicalSystem class:
1 obj.integrator(integrator , time_step =0.01 , atol =0.000001 , rtol =0.001)

where integrator is a string corresponding to the name of the integrator (e.g. integrator="rk4"), time_step is the time 
step used in the RK4 method and atol and rtol are the absolute and relative tolerance used in the RK45 method. In case the 
integrator method is not called, the ContinuousDynamicalSystem methods use the RK4 method with a time step of 𝛥𝑡 = 0.01
by default.

The following code snippet demonstrates how to calculate the trajectory of the Lorenz system using both numerical integrators 
available:

1 >>> from pynamicalsys import ContinuousDynamicalSystem as cds
2 >>> ds = cds(model="lorenz system")
3 >>> ds.info["parameters"]
4 ["sigma", "rho", "beta"]
5 >>> total_time = 80.0 # Total integration time
6 >>> u = [0., 0.1, 0.] # Initial condition (x, y, z)
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Fig. 15. Trajectories for the Lorenz system [Eq. (66)] with total integration time of 80 time units, 𝜎 = 10, 𝜌 = 28, 𝛽 = 8∕3, and with initial 
condition (𝑥0, 𝑦0, 𝑧0) = (0.0, 0.1, 0.0) using the (a)–(c) RK4 method and using the (d)–(f) RK45 method with different precisions, namely, (a) 
𝛥𝑡 = 0.05, (b) 𝛥𝑡 = 0.01, (c) 𝛥𝑡 = 0.005, (d) (atol, rtol) = (10−6, 10−3), (e) (atol, rtol) = (10−8, 10−5), and (f) (atol, rtol) = (10−10, 10−7). Execution time: 
77.7ms.

7 >>> parameters = [10, 28, 8/3] # (sigma, rho, beta)
8 >>> ds.integrator("rk4", time_step =0.01)
9 >>> trajectory = ds.trajectory(u, total_time, parameters=parameters)
10 >>> trajectory.shape
11 (8000, 4)
12 >>> ds.integrator("rk45", atol=1e-8, rtol=1e-5)
13 >>> trajectory = ds.trajectory(u, total_time, parameters=parameters)
14 >>> trajectory.shape
15 (2388, 4)

The trajectory method returns a two-dimensional array of shape (sample_size, system_dimension + 1). The first 
column contains the time samples, while the remaining columns represent the system’s coordinates at each corresponding time, 
i.e., trajectory[:, 0] = t, trajectory[:, 1] = x(t), and so on. Fig.  15 shows example of trajectories for the Lorenz system 
[Eq. (66)] using both RK4 (top row) and RK45 (bottom row) methods with different time steps and absolute and relative tolerances.

6.2. User-defined systems

The ContinuousDynamicalSystem class also allows user defined systems. The equations of motion function signature should 
be dudt = f(t, u, parameters), i.e., given the time t, the state vector u, and the parameters, the function returns the time 
derivative of the state vector. Let us demonstrate how one should proceed using the Rössler system as example. The equations of 
the system are 

𝑥̇ = −(𝑦 + 𝑧),

𝑦̇ = 𝑥 + 𝑎𝑦,

𝑧̇ = 𝑏 + 𝑧(𝑥 − 𝑐),

(67)

where 𝑎, 𝑏, and 𝑐 are the parameters of the system. The function should then be defined as follows:

1 >>> import numpy as np
2 >>> from numba import njit
3 >>> @njit
4 >>> def rossler_system(t, u, parameters):
5 ... a, b, c = parameters
6 ... x, y, z = u
7 ... dx = -(y + z)
8 ... dy = x + a * y
9 ... dz = b + z * (x - c)
10 ... return np.array ([dx, dy, dz])
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Fig. 16. Trajectory for the Rössler system [Eq. (67)] with total integration time of 2000 time units and transient time of 1000 time units. The 
parameters and initial condition are, respectively, (𝑎, 𝑏, 𝑐) = (0.15, 0.20, 10.0) and (𝑥0, 𝑦0, 𝑧0) = (0.1, 0.1, 0.1). The trajectory was generated using the 
RK4 method with a time step of 𝛥𝑡 = 0.005. Execution time: 245ms.

To create the dynamical system object, instead of informing the model argument, we inform the equations_of_motion, 
system_dimension, and number_of_parameters:

1 >>> ds = cds(equations_of_motion=rossler_system, system_dimension =3, number_of_parameters =3)

and we can generate a trajectory, for example, for the Rössler system (Fig.  16):

1 >>> ds.integrator("rk4", time_step =0.005) # Define the integrator
2 >>> u = [0.1, 0.1, 0.1] # Initial condition
3 >>> total_time = 2000 # Total time
4 >>> transient_time = 1000 # Transient time to be discarded
5 >>> parameters = [0.15, 0.20, 10.0] # (a, b, c)
6 >>> trajectory = ds.trajectory(u, total_time, parameters=parameters, transient_time=transient_time)
7 >>> trajectory.shape
8 (200000, 4)

6.3. Chaotic indicators

The ContinuousDynamicalSystem class also offers numerical techniques to detect chaotic behavior. Let us begin with the LEs 
(cf. Section 3.1). Given a 𝑑-dimensional continuous-time dynamical system 𝐱̇ = 𝐟 (𝐱(𝑡), 𝑡), where 𝐟 ∶ R𝑑 → R𝑑 is a smooth vector field, 
the Lyapunov spectrum 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑑 is defined under Oseledec’s multiplicative ergodic theorem [55]. Let 𝐽 (𝐱) = 𝐷𝐟 (𝐱) be the 
Jacobian matrix of the vector field 𝐟 evaluated at 𝐱. The linearized dynamics around a trajectory 𝐱(𝑡) is governed by the variational 
equation 

d𝐲
d𝑡

= 𝐽 (𝐱(𝑡))𝐲, (68)

where 𝐲(𝑡) is a tangent vector. Let 𝛷(𝑡, 𝐱0) denote the fundamental matrix solution to this equation so that 𝛷(𝑡, 𝐱0) describes the 
evolution of tangent vectors along the trajectory starting at 𝐱0. Oseledec’s theorem states that for almost every initial condition 𝐱0, 
the following limit exists: 

𝛬(𝐱 ) = lim
[

𝛷(𝑡, 𝐱 )𝑇𝛷(𝑡, 𝐱 )
]1∕2𝑡 . (69)
0 𝑡→∞ 0 0
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The LEs are then defined via the eigenvalues of 𝛬(𝐱0), and are expressed as 

𝜆𝑖 = lim
𝑡→∞

1
𝑡
log ‖

‖

𝛷(𝑡, 𝐱0)𝐯𝑖‖‖, (70)

where 𝐯𝑖 are the eigenvectors of 𝛬(𝐱0).
Similarly to the discrete-time case, the direct computation of the matrix 𝛷(𝑡, 𝐱0) becomes numerically unstable for large 𝑡, as it 

becomes dominated by the most expanding direction. This problem is addressed by the reorthonormalization of the tangent vectors 
based on a QR decomposition: Given an initial orthonormal basis of tangent vectors encoded in a matrix 𝑄0 ∈ R𝑑×𝑑 , we evolve 𝑄0
along the variational equations. For a short time step 𝛥𝑡, the basis evolves according to 

𝐴1 = 𝛷(𝛥𝑡, 𝐱0)𝑄0. (71)

We then perform a QR decomposition of 𝐴1: 
𝐴1 = 𝑄1𝑅1, (72)

where 𝑄1 is orthonormal and 𝑅1 is upper triangular. The matrix 𝑄1 is the updated orthonormal basis, and 𝑅1 contains the stretching 
information over the interval [0, 𝛥𝑡]. Repeating this process at each time step, we evolve 

𝐴𝑘 = 𝛷(𝛥𝑡, 𝐱(𝑘 − 1)𝛥𝑡)𝑄𝑘−1, (73)

and compute 
𝐴𝑘 = 𝑄𝑘𝑅𝑘. (74)

After 𝑛 steps (total time 𝑡 = 𝑛𝛥𝑡), the accumulated linearized evolution is 
𝛷(𝑡, 𝐱0) = 𝑄𝑛𝑛𝑄

−1
0 , (75)

where 𝑛 = 𝑅𝑛𝑅𝑛−1 ⋯𝑅1 is the product of the upper-triangular matrices.
Now consider the symmetric positive-definite matrix 

𝛷(𝑡, 𝐱0)𝑇𝛷(𝑡, 𝐱0) = 𝑄−𝑇
0 𝑇

𝑛 𝑛𝑄
−1
0 , (76)

which is similar to 𝑇
𝑛 𝑛, meaning that they share the same eigenvalues. In the long-time limit, the eigenvalues of 𝑇

𝑛 𝑛 thus 
approximate those of 𝛷(𝑡, 𝐱0)𝑇𝛷(𝑡, 𝐱0), and therefore yield the LEs.

Since the diagonal elements 𝑟(𝑗)𝑖𝑖  of each 𝑅𝑗 represent the local expansion or contraction along the 𝑖th orthonormal direction 
during the 𝑗th interval, the LEs can be computed as time averages of their logarithms [cf. Eq. (15)]: 

𝜆𝑖 = lim
𝑛→∞

1
𝑛𝛥𝑡

𝑛
∑

𝑗=1
log ||

|

𝑟(𝑗)𝑖𝑖
|

|

|

. (77)

The LEs for continuous-time systems are computed using the lyapunov method from the ContinuousDynamicalSystem class 
of pynamicalsys:
1 obj.lyapunov(u, total_time , parameters=None , transient_time=None , return_history=False , seed=13, log_base=np

↪ .e, method="QR", endpoint=True)

The non-optional arguments are the initial condition u and the total integration time total_time. If the system depends on 
parameter values, they can be passed using the parameters argument. The transient_time specifies the duration to discard 
before starting the Lyapunov exponent calculation. If return_history=False, the method returns only the final values of the 
LEs. When return_history=True, it returns their values at each sample time. The seed argument sets the initial tangent vectors 
randomly, and by default, the logarithm in Eq. (77) is the natural logarithm. You can change the logarithm base by specifying 
it with the log_base argument. The lyapunov method uses the modified Gram–Schmidt algorithm for the QR decomposition. 
For improved numerical stability, you can instead use Householder reflections by setting method="QR_HH". Finally, setting 
endpoint=True ensures that the LEs at the final time are included in the returned history.

In the following, we calculate the LEs for the Lorenz [Eq. (66)] and Rössler [Eq. (67)] systems as well as for a 4-dimensional 
Rössler system [172], defined as 

𝑥̇ = −(𝑦 + 𝑧),

𝑦̇ = 𝑥 + 𝑎𝑦 +𝑤,

𝑧̇ = 𝑏 + 𝑥𝑧,

𝑤̇ = −𝑐𝑧 + 𝑑𝑤,

(78)

which displays hyperchaos for the parameters (𝑎, 𝑏, 𝑐, 𝑑) = (0.25, 3.0, 0.5, 0.05). We choose these three systems as examples for the 
Lyapunov exponent calculation following the seminal work of Wolf et al. [58]. The following code snippet demonstrates the use of 
the lyapunov method from the ContinuousDynamicalSystem class for the three mentioned systems which are built-in within 
the ContinuousDynamicalSystem class:
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Table 1
The average LEs computed over 50 randomly chosen initial conditions using the lyapunov method 
of the ContinuousDynamicalSystem class in pynamicalsys, with a total integration time of 
𝑇 = 2.0 × 104 and a transient time of 𝑡 = 1.0 × 104. Note that in the case of the Lorenz and Rössler 
systems, there is no fourth Lyapunov exponent as they are three-dimensional systems and this is 
denoted in the table by —. Execution time: 13min 15 s.
 Lorenz system Rössler system 4D Rössler system 
 𝜆1 2.168 ± 0.002 0.128 ± 0.002 0.161 ± 0.004  
 𝜆2 −0.0002 ± 0.0002 0.0001 ± 0.0002 0.031 ± 0.002  
 𝜆3 −32.463 ± 0.002 −14.139 ± 0.003 −0.0002 ± 0.0003 
 𝜆4 – – −35.8 ± 0.6  

1 >>> from pynamicalsys import ContinuousDynamicalSystems as cds
2 >>> total_time = 2000 # Total integration time
3 >>> transient_time = 1000 # Discarded time
4 >>> ds = cds(model="lorenz system")
5 >>> u = [0., 0.1, 0.] # Initial condition
6 >>> parameters = [16, 45.92, 4] # (sigma, rho, beta)
7 >>> ds.lyapunov(u, total_time, parameters=parameters, transient_time=transient_time, log_base =2)
8 >>> array([ 2.16623420e+00, -5.95950415e-04, -3.24609067e+01])
9 >>> ds = cds(model="rossler system")
10 >>> u = [0.1, 0.1, 0.1] # Initial condition
11 >>> parameters = [0.15, 0.20, 10.0] # (a, b, c)
12 >>> ds.lyapunov(u, total_time, parameters=parameters, transient_time=transient_time, log_base =2)
13 array([ 1.28949638e-01, 1.49355076e-03, -1.41369173e+01])
14 >>> ds = cds(model="4d rossler system")
15 >>> u = [-20., 0, 0., 15.] # Initial condition
16 >>> parameters = [0.25, 3.0, 0.5, 0.05] # (a, b, c, d)
17 >>> ds.lyapunov(u, total_time, parameters=parameters, transient_time=transient_time, log_base =2)
18 array([ 1.72511105e-01, 3.63638738e-02, 4.73195157e-03, -3.88752036e+01])

Since the code snippet above does not specify the numerical integrator, the integration is performed with the RK4 method and a 
default time step of 10−2. To obtain more accurate estimates of the LEs, we repeat the computation for 50 randomly chosen initial 
conditions, where each component differs by at most 0.001. We choose to calculate the LEs using a base-2 logarithm to ensure 
consistency with Wolf’s results reported in Table I of Ref. [58]. The integration is carried out over a total time of 𝑇 = 2.0 × 104, 
discarding a transient of 𝑡 = 1.0×104. Table  1 reports the mean LEs for the three systems studied, along with their standard deviations, 
showing that the values obtained with pynamicalsys are in close agreement with Wolf’s results.

Another chaotic indicator of paramount importance is the generalization of the smaller alignment index (SALI) and generalized 
alignment index (GALI), the linear dependence index (LDI). For a discussion of these measures, see Section 3.2. Since both GALI𝑘
and LDI𝑘 yield the same conclusion, we have chosen to implement only the SALI and LDI in the ContinuousDynamicalSystem 
class:

1 obj.SALI(u, total_time , k, parameters=None , transient_time=None , return_history=False , seed=13, threshold =1e
↪ -16, endpoint=True)

2 obj.LDI(u, total_time , parameters=None , transient_time=None , return_history=False , seed=13, threshold =1e-16,
↪ endpoint=True)

The threshold parameter is the numerical tolerance for stopping the calculation (default is 10−16). To illustrate the computation 
of the SALI and LDI’s, we use the Lorenz system as an example [173]. We fix the parameters at (𝜎, 𝜌, 𝛽) = (10, 33.3, 8∕3) and use the 
initial condition (𝑥, 𝑦, 𝑧) = (0.0, 0.1, 0.0). The following code snippet demonstrates the use of both SALI and LDI method from the 
ContinuousDynamicalSystem class:

1 >>> from pynamicalsys import ContinuousDynamicalSystem as cds
2 >>> total_time = 20000 # Total integration time
3 >>> transient_time = 10000 # Discarded time
4 >>> ds = cds(model="lorenz system") # Create the dynamical system object
5 >>> ds.integrator("rk45", atol=1e-10, rtol=1e-8) # Set the numerical integrator to RK45
6 >>> u = [0.0, 0.1, 0.0] # Initial condition
7 >>> parameters = [10, 33.3, 8/3] # (sigma, rho, beta)
8 >>> lyapunov = ds.lyapunov(u, total_time, parameters=parameters, transient_time=transient_time,

return_history=True)
9 >>> sali = ds.SALI(u, total_time, parameters=parameters, transient_time=transient_time, return_history=True)
10 >>> ldi_2 = ds.LDI(u, total_time, 2, parameters=parameters, transient_time=transient_time, return_history=

True)
11 >>> ldi_3 = ds.LDI(u, total_time, 3, parameters=parameters, transient_time=transient_time, return_history=

True)
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Fig. 17. (a) The trajectory for the Lorenz system [Eq. (66)] and demonstration of the use of the (b) lyapunov (c) and the SALI and LDI 
methods of the ContinuousDynamicalSystem class of pynamicalsys. Execution times: (a) 2.42 s, (b) 4.31 s, and (c) 2.33 s (SALI), 2.39 s (LDI2), 
and 2.35 s (LDI3).

Fig.  17 shows the time series of the LEs, along with the SALI, LDI2, and LDI3 indicators. As seen in the plot, SALI and LDI2 closely 
overlap, while LDI3 decays significantly faster toward zero. All three indicators exhibit exponential decay, following the exponential 
trends indicated by the dashed lines [81,173].

6.4. Basins of attraction

Multistability is a common property of nonlinear dynamical systems, characterized by the coexistence of two or more attractors 
within the same phase space [174–178]. Each attractor has an associated basin of attraction, defined as the set of initial conditions 
that asymptotically converge to it under the system dynamics. Mapping these basins provides essential information about the system’s 
long term behavior, stability, and sensitivity to perturbations [179]. The geometry of the basins can be highly complex [153,180], 
ranging from smooth, well separated regions to intricately interwoven or even fractal structures, which reflect the presence of 
chaotic saddles and complex invariant manifolds. Computing and visualizing basins of attraction therefore serves as a fundamental 
tool for characterizing multistability, understanding transitions between attractors, and identifying regions of parameter space where 
qualitative changes in dynamics occur.

As a first example of a dynamical system exhibiting multistability, we consider the well-known Duffing oscillator, described by 
𝑥̈ + 𝛿𝑥̇ − 𝛼𝑥 + 𝛽𝑥3 = 𝛾 cos (𝜔𝑡), (79)

where 𝛿 > 0 is the damping coefficient, 𝛼 ∈ R and 𝛽 ∈ R are the coefficients of the linear and nonlinear restoring forces, respectively, 
and 𝛾 > 0 and 𝜔 > 0 denote the amplitude and frequency of the external driving force. Because of its double-well potential and the 
presence of periodic forcing, the Duffing oscillator naturally exhibits multiple coexisting attractors whose basins of attraction can 
display highly intricate structures, making it a paradigmatic system for studying multistability [181–183]. Multistability, however, 
is not unique to the Duffing oscillator. It has been observed in a wide variety of physical, chemical, and biological systems, 
including resonator systems [184], coupled chemical models [185], laser models [186], systems with time-delay [187], and neural 
networks [188], to cite a few.

Before we demonstrate how to use pynalicalsys to compute the basins of attraction, let us first discuss two other alternatives 
for visualizing attractors in phase space. In this section, we have computed the trajectories 𝐱(𝑡) and plotted them directly in phase 
space (Figs.  15–17). However, continuous trajectories can be difficult to interpret, especially in higher dimensions. To simplify 
their analysis, it is common to reduce the dimensionality of the system by recording the state only when it intersects a chosen 
lower-dimensional surface, known as a Poincaré section. A Poincaré section is typically defined by a plane or hypersurface in phase 
space (for instance, 𝑥 = 0 with 𝑥̇ > 0), and each time the trajectory crosses this surface, the phase-space coordinates are recorded. 
This produces a discrete set of points that captures the essential structure of the attractor.

A closely related idea is the stroboscopic map, which is particularly useful for systems with periodic forcing. Instead of 
sampling the trajectory when it crosses a geometric surface, the stroboscopic map samples the system state at regular time intervals 
synchronized with the driving period, for example at 𝑡 = 𝑛𝑇  where 𝑇 = 2𝜋∕𝜔 is the forcing period. This produces a discrete map 
of points in phase space that reveals the long-term dynamics in a way analogous to a Poincaré section but tailored to time-periodic 
systems. Both the Poincaré section and the stroboscopic map can be computed using pynamicalsys. In the following we discuss 
the computation of the stroboscopic map only and we leave the Poincaré section for Section 6.5. Thus, the stroboscopic map can 
be computed using the stroboscopic_method from the ContinuousDynamicalSystem class of pynamicalsys:
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Fig. 18. (a) A chaotic trajectory for the Duffing oscillator [Eq. (79)] and (b) demonstration of the use of the stroboscopic_map method of the 
ContinuousDynamicalSystem class of pynamicalsys with 𝛾 = 0.425. Panels (c)–(e) show three coexisting periodic attractors for the Duffing 
oscillator with 𝛾 = 3. The other parameters are 𝛿 = 0.2, 𝛼 = 𝛽 = 1, and 𝜔 = 1.1. Execution times: (a) 853ms, (b) 1min 30 s, (c)–(e): 1.88 s.

1 obj.stroboscopic_map(u, num_samples , sampling_time , parameters=None , transient_time=None)

Here, u can either be a single initial condition or an ensemble of initial conditions. The parameters num_samples and 
sampling_time determines the number of samples, i.e., the number of points in the map, and the interval between each point, 
respectively. The following code snipped demonstrate how to construct the stroboscopic map for the Duffing oscillator in a chaotic 
regime with parameters 𝛿 = 0.2, 𝛼 = 𝛽 = 1, 𝛾 = 0.425, and 𝜔 = 1.1 and initial condition (𝑥0, 𝑥̇0) = (1, 0) [Fig.  18(a) and (b)]:

1 >>> import numpy as np
2 >>> from pynamicalsys import ContinuousDynamicalSystem as cds
3 >>> ds = cds(model="duffing") # Instanciate the class for the Duffing oscillator
4 >>> ds.info["parameters"] # Obtain the order of the parameters
5 [’delta ’, ’alpha ’, ’beta’, ’gamma ’, ’omega ’]
6 >>> delta, alpha, beta, gamma, omega = 0.2, 1, 1, 0.425, 1.1 # Define the parameters
7 >>> parameters = [delta, alpha, beta, gamma, omega] # Define the parameter list
8 >>> u0 = [1, 0] # Initial condition
9 >>> T = 2 * np.pi / omega # Forcing period
10 >>> sample_time = 100 * T # Time to store the trajectory after the transient
11 >>> transient_time = 100 * T # Transient time
12 >>> total_time = sample_time + transient_time # Total integration time
13 >>> num_samples = 500000 # Number of points in the stroboscopic map
14 >>> trajectory = ds.trajectory(u0, total_time, parameters=parameters, transient_time=transient_time)
15 >>> strobe_map = ds.stroboscopic_map(u0, num_samples, T, parameters=parameters, transient_time=

transient_time)

As for the multistable feature of the Duffing oscillator, for the parameters 𝛿 = 0.2, 𝛼 = 𝛽 = 1, 𝛾 = 3, and 𝜔 = 1.1, there are three 
coexisting periodic attractors shown in Fig.  18(c)–(e). To construct the basin of attraction, we use the basin_of_attraction 
method from the ContinuousDynamicalSystem class of pynamicalsys:

1 obj.basin_of_attraction(u, num_intersections , parameters=None , transient_time=None , map_type="SM",
↪ section_index=None , section_value=None , crossing=None , sampling_time=None , eps=0.05 , min_samples =1)

This method calculates either the stroboscopic map (map_type="SM") or the Poincaré section (map_type="PS") and uses the 
DBSCAN algorithm from scikit-learn [189] to group points that are close to each other in phase space, with eps defining the 
neighborhood radius and min_sample specifying the minimum number of points to form a cluster. Each cluster corresponds to a 
distinct attractor, and initial conditions whose trajectories end up in the same cluster are considered to belong to the same basin of 
attraction. Fig.  19(a) shows the basin of attraction for the Duffing oscillator [Eq. (79)] for the parameters 𝛿 = 0.2, 𝛼 = 𝛽 = 1, 𝛾 = 3, 
and 𝜔 = 1.1. The purple region corresponds to the attractor shown in Fig.  18(c), the green region to the attractor in Fig.  18(d), 
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Fig. 19. Demonstration of the use of the basin_of_attraction method of the ContinuousDynamicalSystem class of pynamicalsys for 
the (a) Duffing oscillator [Eq. (79)] with parameters 𝛾 = 3, 𝛿 = 0.2, 𝛼 = 𝛽 = 1, 𝛾 = 0.425, and 𝜔 = 1.1 and for the (b) magnetic pendulum 
[Eq. (80)]. Each color represents a different asymptotic attractor. Execution times: (a) 30min 18 s and (b) 25min 23 s.  (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)

and the black region to the attractor in Fig.  18(e). The following code snippet demonstrates the use of the basin_of_attraction 
method:

1 >>> import numpy as np
2 >>> from pynamicalsys import ContinuousDynamicalSystem as cds
3 >>> ds = cds(model="duffing") # Instanciate the class for the Duffing oscillator
4 >>> delta, alpha, beta, gamma, omega = 0.2, 1, 1, 3, 1.1 # Define the parameters
5 >>> parameters = [delta, alpha, beta, gamma, omega] # Define the parameter list
6 >>> T = 2 * np.pi / omega # Sampling time for the stroboscopic map
7 >>> transient_time = 100 * T # Initial transient to discard
8 >>> num_samples = 100 # Number of points in the stroboscopic map
9 >>> grid_size = 500 # Number of points in the basin of attraction
10 >>> x_range, v_range = (-5, 5), (-5, 5) # Ranges in x and v = dotx
11 >>> x = np.linspace (* x_range, grid_size) # Uniformly distributed points in x
12 >>> v = np.linspace (* v_range, grid_size) # Uniformly distributed points in v
13 >>> x, v = np.meshgrid(x, v, indexing="ij") # Create a 2D mesh of points
14 >>> u0 = np.zeros(( grid_size, grid_size, 2)) # Store the initial conditions in a 2D array
15 >>> u0[:, :, 0] = x
16 >>> u0[:, :, 1] = v
17 >>> u0 = u0.reshape(grid_size ** 2, 2)
18 >>> basin = ds.basin_of_attraction(u0, num_samples, parameters=parameters, transient_time=transient_time,

sampling_time=T)
19 >>> basin.shape
20 (25000,)
21 >>> basin = basin.reshape(grid_size, grid_size) # Reshape into a 2D array to match the grid

As a second example of a dynamical system with more than two coexisting attractors, we consider a magnetic pendulum [190–
192]. The system consists of three identical magnets placed at the vertices of an equilateral triangle with unit edge length. A 
pendulum with an iron bob is suspended from above the triangle’s center by a massless rod. The bob experiences gravity, attractive 
magnetic forces, and air drag. We assume the pendulum rod is long compared to the distance between the magnets, enabling a 
small-angle approximation. The interaction between the bob and each magnet follows an inverse-square law, as if the magnets were 
point sources. In dimensionless form, the equations of motion are 

𝑥̈ = 𝜔0𝑥
2 − 𝛼𝑥̇ +

3
∑

𝑖=1

𝑋𝑖 − 𝑥
𝐷𝑖(𝑋𝑖, 𝑌𝑖, 𝑡)3

,

𝑦̈ = 𝜔0𝑦
2 − 𝛼𝑦̇ +

3
∑

𝑖=1

𝑌𝑖 − 𝑦
𝐷𝑖(𝑋𝑖, 𝑌𝑖, 𝑡)3

,

(80)

where (𝑋𝑖, 𝑌𝑖) are the coordinates of the 𝑖th magnet, 𝜔0 is the natural frequency of oscillation, 𝛼 is the damping coefficient due 
to air resistance, and 𝐷𝑖(𝑋𝑖, 𝑌𝑖, 𝑡) =

√

(𝑋𝑖 − 𝑥)2 + (𝑌𝑖 − 𝑦)2 + 𝑑2 and 𝑑 are the distances from the pendulum bob to the 𝑖th magnet 
and to the magnets plane, respectively. This system has three fixed-point attractors located at the positions of the magnets. The 
coordinates of the magnets are (𝑋 , 𝑌 ) = (1∕

√

3, 0) (green), (𝑋 , 𝑌 ) = (−1∕2
√

3,−0.5) (purple), and (𝑋 , 𝑌 ) = (−1∕2
√

3, 0.5) (black). 
1 1 2 2 3 3
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To visualize their basins of attraction, we consider a grid of 500 × 500 initial conditions uniformly distributed over the (𝑥, 𝑦) plane 
with 𝑥̇0 = 𝑦̇0 = 0. The resulting basin of attraction is shown in Fig.  19(b) and the following code snippet demonstrates how to obtain 
it:

1 >>> import numpy as np
2 >>> from pynamicalsys import ContinuousDynamicalSystem as cds
3 >>> ds = cds(model="magnetic pendulum") # Instanciate the class for the magnetic pendulum
4 >>> ds.info["parameters"] # Obtain the order of the parameters
5 [’omega ’, ’alpha ’, ’d’, ’X1’, ’Y1’, ’X2’, ’Y2’, ’X3’, ’Y3’]
6 >>> omega, d, alpha = 0.5, 0.3, 0.2 # Define the parameters
7 >>> X1, Y1 = 1 / np.sqrt (3), 0.0
8 >>> X2, Y2 = - 1 / (2 * np.sqrt (3)), -0.5
9 >>> X3, Y3 = - 1 / (2 * np.sqrt (3)), 0.5
10 >>> parameters = [omega, alpha, d, X1, Y1, X2, Y2, X3, Y3]
11 >>> T = 1 / omega # Sampling time
12 >>> transient_time = 100 * T # Initila time to discard
13 >>> num_samples = 50 # Number of samples on the stroboscopic map
14 >>> grid_size = 500 # Size of the basin of attraction
15 >>> x_range, y_range = (-2, 2), (-2, 2) # Ranges in x and y
16 >>> x = np.linspace (* x_range, grid_size) # Uniformly distribuited points in x
17 >>> y = np.linspace (* y_range, grid_size) # Uniformly distribuited points in x
18 >>> x, y = np.meshgrid(x, y, indexing=’ij’) # Create a 2D mesh of points
19 >>> u0 = np.zeros(( grid_size, grid_size, 4)) # Store the initial conditions in a 2D array
20 >>> u0[:, :, 0] = x
21 >>> u0[:, :, 2] = y
22 >>> u0 = u0.reshape(grid_size ** 2, 4)
23 >>> basin = ds.basin_of_attraction(u0, num_samples, parameters=parameters, transient_time=transient_time,

sampling_time=T)
24 >>> basin.shape
25 (25000,)
26 >>> basin = basin.reshape(grid_size, grid_size) # Reshape into a 2D array to match the grid

6.5. Hamiltonian systems

Up to this point in this section, we have considered continuous-time dynamical systems of the form 𝐱̇ = 𝐟 (𝐱, 𝑡), where the evolution 
of the state 𝐱 is governed by the vector field 𝐟 . While this formulation is general and valid for any continuous-time system, depending 
on the nature of the governing equations, different subclasses arise. A particularly important subclass is formed by Hamiltonian 
systems, which describe the evolution of conservative mechanical systems in terms of the 𝑁-dimensional generalized canonical 
coordinates 𝐪 = (𝑞1, 𝑞2,… , 𝑞𝑁 ) and momentum 𝐩 = (𝑝1, 𝑝2,… , 𝑝𝑁 ) for a 2𝑁-dimensional Hamiltonian system with 𝑁 degrees of 
freedom. These systems are described by a scalar function 𝐻(𝐩,𝐪, 𝑡), the Hamiltonian, and the time evolution of the state vector 
(𝐩,𝐪) is given by Hamilton’s equations: 

𝑞̇𝑖 =
𝜕𝐻
𝜕𝑝𝑖

,

𝑝̇𝑖 = − 𝜕𝐻
𝜕𝑞𝑖

,
(81)

with 𝑖 = 1, 2,… , 𝑁 . For an autonomous Hamiltonian, i.e., a Hamiltonian function that does not depend explicitly on time (𝜕𝐻∕
𝜕𝑡 = 0), 𝐻 ≡ 𝐻(𝐩,𝐪) is a conserved quantity and if the kinetic energy 𝑇  of the system is quadratic on the velocities, 𝐻 is the total 
mechanical energy of the system: 𝐻 = 𝑇 +𝑉 , where 𝑉  is the potential energy. One important feature of Hamiltonian systems is that 
it has a symplectic structure [55] thus preserving the infinitesimal phase space volume. Following that, Liouville’s theorem states 
that the phase space volume of a closed surface is preserved under the time evolution in a Hamiltonian system [46,55]. Therefore, 
the existence of attractors and repellers are prohibited in a Hamiltonian system.

Classical examples of Hamiltonian systems include the three-body problem [2] (or any gravitational interaction problem), 
which exhibits complex gravitational interactions and chaotic behavior, the double pendulum [193,194], known for its sensitive 
dependence on initial conditions, the Atwood machine [195,196], a simple mechanical system demonstrating energy conservation, 
and the spring pendulum [197,198], which couples linear and rotational motion and exhibits nonlinear dynamics.

Due to the symplectic structure of Hamiltonian systems, special care must be taken when numerically integrating their equations 
of motion. Conventional integration schemes, such as the classical fourth-order Runge–Kutta (RK4) method, do not preserve the 
symplectic structure. Although RK4 can provide high local accuracy for short time intervals, its lack of symplecticity leads to a 
systematic drift in conserved quantities (such as the Hamiltonian) over long integration times. This drift manifests as artificial 
energy gain or loss and distortion of the phase-space structure. To correctly capture the behavior of Hamiltonian systems, the 
equations of motion must be integrated using methods designed to preserve the symplectic form ensuring that invariants such as 
the Hamiltonian are conserved over long integration times. These methods are called symplectic integrators and, in this paper, we 
consider the second-order velocity-Verlet integrator [199] (VV2) and the fourth-order Yoshida integrator [200] (SVY4), which uses 
the VV2 scheme as its underlying second-order step, to integrate both the equations of motion and the variational equations [201]. 
A detailed discussion of these methods is provided in the Appendix  B.

The HamiltonianSystem class is analogous to the ContinuousDynamicalSystem class. To create our Hamiltonian system 
object, we import the class using
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1 from pynamicalsys import HamiltonianSystem as HS

and instantiate the class by informing either the built-in model, via the model parameter, or by informing the gradient of 𝑇  with 
respect to 𝐩 (𝜕𝑇 ∕𝜕𝐩) and the gradient of 𝑉  with respect to 𝐪 (𝜕𝑉 ∕𝜕𝐪) via the grad_T and grad_V parameters, respectively. 
Additionally, we need to inform the number of degrees of freedom (degrees_of_freedom) and the number of parameters 
(number_of_parameters). For the Lyapunov exponents, SALI, and LDI calculations, it is also necessary to inform the Hessian 
matrix of 𝑇  and 𝑉  (𝜕2𝑇 ∕𝜕𝐩2 and 𝜕2𝑉 ∕𝜕𝐪2) via the hess_T and hess_V parameters, respectively. The following code snippet 
illustrates how to list the available built-in models and integrators:
1 >>> HS.available_models ()
2 [’henon heiles ’]
3 >>> HS.available_integrators ()
4 [’vv2’, ’svy4’]

Here, ’vv2’ corresponds to the second-order velocity-Verlet integrator, while ’svy4’ refers to the fourth-order Yoshida 
integrator, which uses the velocity-Verlet scheme as its underlying second-order step. The numerical integrator is set using the 
integrator method from the HamiltonianSystem class:
1 obj.integrator(integrator , time_step =0.01)

In case the integrator method is not called, the HamiltonianSystem class methods use the SVY4 method with a time step 
of 𝛥 = 0.01 by default.

Although the Hénon–Heiles Hamiltonian [202] is provided as a built-in option within the HamiltonianSystem class, it is 
instructive to demonstrate how an user can define a custom Hamiltonian system. The Hénon–Heiles model is a two-degree-of-freedom 
system given by 

𝐻(𝑥, 𝑦, 𝑝𝑥, 𝑝𝑦) =
1
2

(

𝑝2𝑥 + 𝑝2𝑦
)

+ 1
2
(

𝑥2 + 𝑦2
)

+ 𝑥2𝑦 −
𝑦3

3
. (82)

This Hamiltonian is separable, 𝐻 = 𝑇 (𝑝𝑥, 𝑝𝑦) + 𝑉 (𝑥, 𝑦), with gradients of the kinetic and potential energy terms given by 
𝜕𝑇
𝜕𝐩

=
(

𝑝𝑥
𝑝𝑦

)

, 𝜕𝑉
𝜕𝐪

=
(

𝑥 + 2𝑥𝑦
𝑦 + 𝑥2 − 𝑦2

)

. (83)

The Hessians of the kinetic and potential energy terms are then 
𝜕2𝑇
𝜕𝐩2

=
(

1 0
0 1

)

, 𝜕2𝑉
𝜕𝐪2

=
(

1 + 2𝑦 2𝑥
2𝑥 1 − 2𝑦

)

. (84)

The gradients and Hessians of 𝑇  and 𝑉  for the Hénon–Heiles Hamiltonian can now be implemented as Python functions. In the 
example below, henon_heiles_grad_T returns the gradient of the kinetic energy with respect to the generalized momenta 𝐩, and 
henon_heiles_grad_V returns the gradient of the potential energy with respect to the generalized coordinates 𝐪. Analogously, 
one could define additional functions (e.g., henon_heiles_hess_T and henon_heiles_hess_V) to return the Hessians of 𝑇  and 
𝑉 :

1 >>> import numpy as np
2 >>> from numba import njit
3 >>> @njit
4 >>> @njit
5 >>> def henon_heiles_grad_T(p, parameters=None):
6 ... return np.array ([p[0], p[1]])
7 >>> @njit henon_heiles_hess_T(p, parameters=None):
8 ... return np.array ([[1.0, 0.0], [0.0, 1.0]])
9 >>> @njit
10 >>> def henon_heiles_grad_V(q, parameters=None):
11 ... q0, q1 = q[0], q[1]
12 ... dV_dq0 = q0 * (1.0 + 2.0 * q1)
13 ... dV_dq1 = q1 + q0 * q0 - q1 * q1
14 ... return np.array ([ dV_dq0, dV_dq1 ])
15 >>> @njit
16 >>> def henon_heiles_hess_V(q, parameters=None):
17 ... q0, q1 = q[0], q[1]
18 ... H00 = 1.0 + 2.0 * q1
19 ... H01 = 2.0 * q0
20 ... H11 = 1.0 - 2.0 * q1
21 ... return np.array ([[ H00, H01], [H01, H11]])

Note that even though the Hénon–Heiles Hamiltonian itself does not depend on any additional parameters, the function signatures 
include a parameters argument. This ensures compatibility with the general integrator interface, which passes user-defined parameter 
arrays to all gradient functions. Then, to create the Hamiltonian system object, we proceed as follows:
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Fig. 20. (a)–(d) Trajectories for the Hénon–Heiles Hamiltonian [Eq. (82)] using different numerical integrators, namely, VV2, SVY4, RK4, and 
RK45, respectively. The energy and initial conditions used are (𝐸, 𝑥, 𝑦, 𝑝𝑦) = (1∕8, 0, 0.1, 0) and 𝑝𝑥 is calculated from 𝑝𝑥 = 𝑝𝑥(𝐸, 𝑥, 𝑦, 𝑝𝑦). (e) The 
relative energy error 𝐸𝑟 as a function of time for these four integration scheme. (f) Demonstration of the use of the poincare_section method 
of the HamiltonianSystem class of pynamicalsys. Execution times: (a) 251ms, (b) 723ms, (c) 838ms, (d) 484ms, and (f) 1min 31 s.

1 >>> from pynamicalsys import HamiltonianSystem as HS
2 >>> hs = HS(grad_T=henon_heiles_grad_T, grad_V=henon_heiles_grad_V, hess_T=henon_heiles_hess_T, hess_V=

henon_heiles_hess_V, degrees_of_freedom =2, number_of_parameters =0)

The following code snippet demonstrates how to calculate a trajectory for the Hénon–Heiles system using both VV2 and SVY4 
integrators. We choose a total energy of 𝐸0 = 1∕8 and initial condition (𝑥, 𝑦, 𝑝𝑦) = (0, 0.1, 0) with 𝑝𝑥 being calculated from 
𝑝𝑥 = 𝑝𝑥(𝑥, 𝑦, 𝑝𝑦, 𝐸) [Fig.  20(a) and (b)]:

1 >>> E_0 = 1 / 8 # Total energy of the system
2 >>> x, y, py = 0, 0.1, 0 # Define the initial condition
3 >>> px = np.sqrt(2 * (E_0 - x**2 * y + y**3 / 3) - x**2 - y**2 - py**2)
4 >>> q = np.array ([x, y])
5 >>> p = np.array ([px, py])
6 >>> total_time = 300
7 >>> ds.integrator("vv2", time_step =0.01)
8 >>> trajectory_vv2 = hs.trajectory(q, p, total_time)
9 >>> ds.integrator("svy4", time_step =0.01)
10 >>> trajectory_svy4 = hs.trajectory(q, p, total_time)

To compare these trajectories with nonsymplectic integrators, we compute the same trajectories using the RK4 integrator with 
time step 𝛥𝑡 = 0.01 and the RK45 integrator with absolute and relative tolerances of atol = rtol = 10−10 [Fig.  20(c) and (d)] and 
calculate the relative energy error 

𝐸𝑟(𝑡) =
|

|

𝐸(𝑡) − 𝐸0
|

|

𝐸0
(85)

as a function of time [Fig.  20(e)] up to 𝑇 = 104. We find that 𝐸𝑟 for both RK4 and RK45 initially remains smaller than 𝐸𝑟 for the VV2 
integrator, but gradually increases with time, while 𝐸𝑟 for VV2 stays bounded and below 10−4. As expected, the SVY4 scheme exhibits 
the smallest relative error, remaining bounded and below 10−9. Although the trajectories produced by nonsymplectic integrators 
appear visually similar to those obtained with symplectic schemes for short integration times (𝑇 = 300), this agreement is only 
superficial. Over longer time intervals, the systematic energy drift inherent to nonsymplectic methods leads to a cumulative phase 
error and eventual divergence of the trajectories from the true Hamiltonian flow. In contrast, symplectic integrators constrain the 
energy oscillations and preserve the qualitative structure of phase space even over very long integrations, making them more reliable 
for studying long-term dynamics.

The Hénon–Heiles Hamiltonian is a system with a four-dimensional phase space. This high dimensionality makes direct 
visualization of trajectories difficult. In Section 6.4, we discussed two common techniques for reducing the dimensionality of 
the phase space: the Poincaré section and the stroboscopic map. While the latter has already been introduced in Section 6.4, 
we now demonstrate how to obtain a Poincaré section using pynamicalsys. We employ here the HamiltonianSystem class, 
although the procedure is analogous for the ContinuousDynamicalSystem class. The poincare_section method of the 
HamiltonianSystem class extracts the points at which a trajectory intersects a given lower-dimensional surface of section, thereby 
reducing the dimensionality of the flow and revealing its geometric structure:
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1 obj.poincare_section(q, p, num_intersections , parameters=None , section_index =0, section_value =0,
↪ crossing =1)

Here q and p are the initial generalized coordinates and momenta of the trajectory, and num_intersections specifies how 
many intersection points with the section should be computed. The optional parameters argument allows passing system param-
eters if needed. The section_index selects which phase-space coordinate is used to define the section, while section_value 
specifies the value of that coordinate at which the section is taken (by default, the hyperplane is 𝑞0 = 0). The crossing parameter 
determines the direction of crossing: 1 restricts to upward crossings, -1 to downward crossings, and 0 to all crossings regardless 
of direction. The method returns an array with the time of the crossings and the phase-space points lying on the chosen Poincaré 
section, which can then be plotted or further analyzed.

The following code snippet demonstrate the use of the poincare_section method for an ensemble of initial conditions with 
energy 𝐸 = 1∕8 and 𝑥 = 0 [Fig.  20(f)]. We choose as our Poincaré section the plane 𝑥 = 0 with 𝑥̇ > 0:

1 >>> import numpy as np
2 >>> from pynamicalsys import HamiltonianSystem as HS
3 >>> hs = HS(model="henon heiles") # Use the built-in model
4 >>> num_ic = 200 # Number of initial conditions
5 >>> dof = 2 # Number of degrees of freedom
6 >>> q, p = np.zeros (( num_ic, dof)), np.zeros(( num_ic, dof)) # Arrays to store the initial conditions
7 >>> E_ref = 1 / 8 # Total energy of the system
8 >>> x = 0 # Define the initial condition
9 >>> y_range = (-0.5, 0.5) # Select initial condition within these ranges
10 >>> py_range = (-0.5, 0.5)
11 >>> np.random.seed (13) # Set the seed for reproducibility
12 >>> for i in range(num_ic): # Generate the valid initial conditions
13 ... while True:
14 ... py = np.random.uniform (* py_range)
15 ... y = np.random.uniform (* y_range)
16 ... px = 2 * (E_ref - x**2 * y + y**3 / 3) - x**2 - y**2 - py**2
17 ... if px > 0:
18 ... q[i] = [x, y]
19 ... p[i] = [np.sqrt(px), py]
20 ... break
21 >>> num_intersections = 5000 # Number of points in the Poincaré section
22 >>> PS = hs.poincare_section(q, p, num_intersections) # Generate the Poincaré section
23 >>> PS.shape
24 (200, 5000, 5)

Since the HamiltonianSystem class shares the same workflow as the ContinuousDynamicalSystem class, we have opted 
not to include separate demonstrations of the stroboscopic_map, lyapunov, SALI, and LDI methods. These methods follow the 
same usage patterns as those already illustrated in Sections 6.3 and 6.4. We refer the reader to the documentation page [203] for 
further details.

7. Conclusions

In this paper, we have introduced pynamicalsys, an open-source Python module for the analysis of both discrete- and 
continuous-time dynamical systems. The module implements a variety of methods to analyze and quantify the dynamical behavior of 
dynamical systems. These include trajectory, Poincaré section, stroboscopic map, and bifurcation diagram computation, Lyapunov 
exponent estimation, the smaller alignment index (SALI) and the linear dependence index (LDI), and other indicators of chaotic 
behavior. Additionally, for the discrete-time systems, it provides tools for periodic orbit detection and the computation of their 
invariant manifolds, as well as escape analysis and basin quantification. All methods are built on top of Numpy and Numba, ensuring 
high performance and efficiency. The DiscreteDynamicalSystem, ContinuousDynamicalSystem, and HamiltonianSystem 
classes come with several built-in models ready to use, however, they are not limited to the built-in ones. The definition of custom 
mapping functions and equations of motion is extremely easy and straightforward.

We have provided a description, literature review, and mathematical description of the principal methods and classes of 
pynamicalsys’s module. Additionally, the complete documentation is available in Ref. [203], with a more in-depth discussion 
and beginner-friendly language along with the API (Application Programming Interface) reference. The Jupyter notebook used to 
generate and plot all the data used in this paper is available in the Supplementary Material as well as in Ref. [204]. We are committed 
to keep implementing new features and including them in new versions of pynamicalsys.

Even though there has been a paradigm shift in the scientific community regarding the public sharing of code and data [205], 
many researchers remain reluctant [206], and some do not comply with their own published data sharing statements [207]. This 
has led to reproducibility issues in many scientific publications [208,209]. Therefore, we hope that pynamicalsys contributes to 
making research in nonlinear dynamics more accessible and reproducible, and helps shift the prevailing culture of withholding code 
and data.
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While pynamicalsys shares some functionality with established toolkits such as MATCONT [210], DynamicalSystems.jl [211,
212], and JITCode [213], its scope and design philosophy differ. In contrast to MATCONT’s emphasis on advanced continuation 
methods within a proprietary MATLAB environment, pynamicalsys offers a lightweight, fully open-source Python alternative that 
supports both discrete and continuous systems through a unified API. Compared to DynamicalSystems.jl, it targets the larger and 
rapidly growing Python user community, benefiting from Python’s widespread adoption across scientific disciplines. With Numba 
acceleration, pynamicalsys achieves competitive performance without requiring a compiled-language toolchain. Unlike JITCode, 
which focuses solely on fast ODE integration, pynamicalsys integrates trajectory computation, chaos detection, and bifurcation 
analysis into a single package, aiming to balance flexibility performance and usability for research and teaching in nonlinear 
dynamics. We are currently exploring the incorporation of JITCode into the continuous system class to further enhance integration 
performance.

There are also some other open-source projects related to numerical methods in nonlinear dynamics research, such as the 
pyunicorn [122], ordpy [214], tisean [215], and powerlaw [216].
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Appendix A. Benchmarks

In this section, we show the average execution times for the main functionalities of the DiscreteDynamicalSystem (Table  A.2) 
and ContinuousDynamicalSystem (Table  A.3) classes for typical values of total iteration time, 𝑁 = 1× 106, and total integration 
time, 𝑇 = 1.0×104 time units. The benchmarks were obtained on a MacBook Air equipped with an Apple M4 chip, featuring a 10-core 
CPU. The timing measurements for the methods were performed in a Jupyter Notebook using the %%timeit magic command with 
the options -n 5 -r 10, i.e., 5 loops per run and 10 runs in total, reporting the mean ± standard deviation over the 10 runs.

Overall, the execution times for both discrete and continuous dynamical systems increase with the system’s dimensionality and 
the computational complexity of the method. In the DiscreteDynamicalSystem class, the trajectory method is consistently 
the fastest, with runtimes under 60ms even for 4D systems. In contrast, lyapunov calculations are significantly more expensive, 
rising from about 94ms in 1D to nearly 3.8 s in 4D. This higher cost is primarily due to the repeated QR decompositions required 
for the base vectors. Notably, the lyapunov method is far more efficient for 2D systems than for higher-dimensional cases, thanks 
to the analytical approach described in Section 3.1.2. Among the chaotic indicators, SALI is generally the most efficient. Although 
SALI and LDI  are equivalent, LDI  is considerably slower because it requires computing a singular value decomposition at each 
2 2
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Table A.2
Benchmark execution times for the main functionalities of the DiscreteDynamicalSystem class in pynamicalsys. All 
simulations were performed using a total iteration time of 𝑁 = 1 × 106 and a transient time of 𝑁𝑡 = 5 × 105, except for the 
recurrence_time_entropy method, for which we used 𝑁 = 5.1 × 105 and 𝑁𝑡 = 5 × 105.
Class method 1D 2D area-preserving 2D dissipative 3D 4D

trajectory 21ms ± 6.33ms 35.9ms ± 1.14ms 44.5ms ± 923 μs 44.5ms ± 786 μs 56.6ms ± 605 μs
lyapunov 94.2ms ± 3.94ms 345ms ± 3.2ms 197ms ± 2.21ms 1.28 s ± 12.6ms 3.77 s ± 168ms
recurrence_time_entropy 142ms ± 7.12ms 78.8ms ± 330 s 133ms ± 9.93ms 110ms ± 5.11ms 98.2ms ± 554 μs
SALI – 125 μs ± 17.1 μs 20.8ms ± 87.4 μs 20.1ms ± 185 μs 4.65ms ± 143 μs
LDI2 – 1.47ms ± 591 μs 209ms ± 7.2ms 225ms ± 4.03ms 126ms ± 2.24ms
LDI3 – – – 200ms ± 7.88ms 59.9ms ± 805 μs
LDI4 – – – – 13.6ms ± 1.08ms

Table A.3
Benchmark execution times for the main functionalities of the 
ContinuousDynamicalSystem class in pynamicalsys. All simula-
tions were performed using a total integration time of 𝑇 = 1.0 × 104

time units and a transient time of 𝑡 = 5.0×103 time units using the RK4 
method with a time step of 𝛥𝑡 = 0.01.
Class method Lorenz system Rössler system 4D Rössler system
trajectory 574ms ± 3.36ms 596ms ± 50.6ms 595ms ± 5.95ms
lyapunov 2.18 s ± 63ms 2.17 s ± 74.9ms 2.82 s ± 54.8ms
SALI 206ms ± 61.6ms 314ms ± 56ms 296ms ± 2.88ms
LDI2 344ms ± 23.8ms 1.92 s ± 31.1ms 2.07 s ± 31.5ms
LDI3 189ms ± 2.68ms 201ms ± 2.12ms 1.21 s ± 23.6ms
LDI4 – – 194ms ± 8.81ms

Table A.4
Benchmark execution times for the main functionalities of the HamiltonianSystem class in pynamicalsys 
(third and fourth column) in comparison with the main functionalities of the ContinuousDynamicalSystem 
class (second column) for the Hénon–Heiles Hamiltonian system. All simulations were performed using a total 
integration time of 𝑇 = 1.0 × 104 time units and a time step of 𝛥𝑡 = 0.01. For the Poincaré section, we considered 
5000 intersections.
Class method 4th order Runge–Kutta (RK4) 2nd order velocity–Verlet (VV2) 4th order Yoshida (SVY4)
trajectory 837ms ± 12.3ms 216ms ± 9.23ms 699ms ± 71.6ms
poincare_section 933ms ± 17.2ms 682ms ± 7.76ms 2.16 s ± 19ms
lyapunov 16 s ± 128ms 6.18 s ± 31.7ms 13.5 s ± 104ms
SALI 211ms ± 2.31ms 318ms ± 20.5ms 576ms ± 24.9ms
LDI2 1.83 s ± 23.4ms 3.65 s ± 14.4ms 2.57 s ± 13.9ms
LDI3 799ms ± 10.9ms 1.35 s ± 3.99ms 1.57 s ± 4.78ms
LDI4 330ms ± 3.44ms 668ms ± 2.61ms 805ms ± 18.1ms

step. These benchmarks highlight that, unless LEs are specifically needed, distinguishing between chaotic and regular solutions can 
be performed much more efficiently using SALI or LDI.

For the ContinuousDynamicalSystem class, all methods are costlier than their discrete counterparts due to the numerical 
integration of ODEs. The trajectory method runs in roughly 0.57 s–0.60 s regardless of dimension, while lyapunov calculations 
take around 2.2 s for three-dimensional systems and 2.82 s for the 4D case. Among the chaotic indicators, SALI remains faster than 
most LDI variants, though the runtime gap is smaller than in the discrete case. Higher-order LDI computations again exhibit a 
noticeable increase in cost with dimension. These results show that the implemented methods are efficient for large-scale simulations, 
with runtimes well below a few seconds even for high-dimensional cases, making them suitable for extensive parameter sweeps and 
statistical studies.

For the HamiltonianSystem class (Table  A.4), the execution times depend strongly on the chosen integration scheme. As 
expected, the second-order velocity-Verlet (VV2) integrator yields the fastest trajectory and lyapunov calculations (roughly 
four times faster than the standard RK4 implementation) while still maintaining symplecticity. The fourth-order Yoshida (SVY4) 
integrator strikes a balance between speed and accuracy, outperforming RK4 for some tasks but remaining slower than VV2. 
For Poincaré section computations, VV2 again provides the lowest runtime, whereas SVY4 is the most expensive because it 
requires multiple force evaluations per step. The chaotic indicators show a similar trend: SALI remains the most efficient overall, 
while higher-order LDI variants grow progressively more costly. Notably, the differences between integrators become especially 
pronounced for lyapunov calculations, where RK4 takes about 16 s while VV2 completes the same task in just over 6 s. These 
benchmarks demonstrate that symplectic integrators, particularly VV2, offer substantial performance gains for Hamiltonian systems 
while preserving the geometric structure of phase space, making them well-suited for long-term integrations and large-scale 
parameter studies.
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Appendix B. Numerical integrators

Fourth-order Runge–Kutta method

The fourth-order Runge–Kutta method is one of the most widely used algorithms to numerically solve initial-value problems of 
the form 

𝐲̇(𝑡) = 𝐟 (𝑡, 𝐲(𝑡)),
𝐲(𝑡0) = 𝐲0.

(B.1)

For a given time step ℎ, the RK4 scheme advances the solution from 𝐲𝑛 at 𝑡𝑛 to 𝐲𝑛+1 at 𝑡𝑛+1 = 𝑡𝑛 + ℎ via four intermediate slope 
evaluations: 

𝐤1 = 𝐟
(

𝑡𝑛, 𝐲𝑛
)

,

𝐤2 = 𝐟
(

𝑡𝑛 +
ℎ
2
, 𝐲𝑛 +

ℎ
2
𝐤1
)

,

𝐤3 = 𝐟
(

𝑡𝑛 +
ℎ
2
, 𝐲𝑛 +

ℎ
2
𝐤2
)

,

𝐤4 = 𝐟
(

𝑡𝑛 + ℎ, 𝐲𝑛 + ℎ𝐤3
)

,

(B.2)

and the approximation of the state at 𝑡𝑛+1 is then given by 

𝐲𝑛+1 = 𝐲𝑛 +
ℎ
6
(

𝐤1 + 2𝐤2 + 2𝐤3 + 𝐤4
)

. (B.3)

This method achieves fourth-order accuracy in the local truncation error, (ℎ5), and third-order accuracy for the global error, (ℎ4).

Adaptive 4th/5th-order Runge–Kutta method (Dormand–Prince)

The adaptive Runge–Kutta method combines two formulas of different orders to control the local truncation error and adjust the 
time step automatically. A widely used implementation is the fourth/fifth-order Dormand–Prince method (RK45). Like the classical 
RK4, RK45 solves initial-value problems of the form given by Eq. (B.1), but in each step it computes two approximations of the 
solution: a fifth-order estimate 𝐲(5)𝑛+1 and a fourth-order estimate 𝐲

(4)
𝑛+1. The difference between these two estimates provides an error 

estimate: 

𝐞𝑛+1 = 𝐲(5)𝑛+1 − 𝐲(4)𝑛+1. (B.4)

In a single step, the method evaluates seven intermediate stages 𝐤𝑖 according to the Dormand–Prince coefficients 𝑐𝑖 and 𝑎𝑖𝑗 : 

𝐤𝑖 = 𝐟
(

𝑡𝑛 + 𝑐𝑖ℎ, 𝐲𝑛 + ℎ
𝑖−1
∑

𝑗=0
𝑎𝑖𝑗𝐤𝑗

)

, (B.5)

where 𝑖 = 0, 1,… , 6 and ℎ is the current time step. The fourth- and fifth-order approximations are then obtained as 

𝐲(4)𝑛+1 = 𝐲𝑛 + ℎ
6
∑

𝑖=0
𝑏(4)𝑖 𝐤𝑖,

𝐲(5)𝑛+1 = 𝐲𝑛 + ℎ
6
∑

𝑖=0
𝑏(5)𝑖 𝐤𝑖,

(B.6)

where 𝑏(4)𝑖  and 𝑏(5)𝑖  are the corresponding weights.
The element-wise error is normalized using absolute and relative tolerances (atol and rtol): 

𝐞norm =
|

|

|

𝐲(5)𝑛+1 − 𝐲(4)𝑛+1
|

|

|

atol + rtol ⋅max
(

|

|

𝐲𝑛||,
|

|

|

𝐲(5)𝑛+1
|

|

|

) , (B.7)

and the error is then computed as err = max(𝐞norm). If err < 1, the step is accepted. Otherwise, the step is rejected and recomputed 
with a smaller time step. The next time step is then adapted according to 

ℎnew = ℎ ⋅min
(

max
(

0.9 err−0.25, 0.1
)

, 2.0
)

. (B.8)

The new time step is scaled according to the error estimate but bounded to the interval [0.1ℎ, 2.0ℎ] to prevent excessively large or 
small changes.

The adaptive RK45 method is highly efficient for general ordinary differential equations because it automatically increases the 
step size when the solution varies slowly and decreases it when rapid changes occur.
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Second-order velocity–Verlet integrator

Consider an autonomous Hamiltonian system with 𝑁 degrees of freedom and a separable Hamiltonian 
𝐻(𝐩,𝐪) = 𝑇 (𝐩) + 𝑉 (𝐪), (B.9)

where 𝐪 and 𝐩 are the generalized coordinates and momenta, respectively. The equations of motion are given by Hamilton’s equations 

𝑞̇𝑖 =
𝜕𝐻
𝜕𝑝𝑖

,

𝑝̇𝑖 = − 𝜕𝐻
𝜕𝑞𝑖

,
(B.10)

for 𝑖 = 1, 2,… , 𝑁 . The velocity-Verlet integrator [199] in the kick–drift–kick form advances the system from time 𝑡𝑛 to 𝑡𝑛+1 = 𝑡𝑛 + ℎ
through the following sequence:

half-kick of momentum: 

𝐩𝑛+ 1
2
= 𝐩𝑛 −

ℎ
2
𝜕𝐻
𝜕𝐪

, (B.11)

drift of position: 

𝐪𝑛+1 = 𝐪𝑛 + ℎ 𝜕𝐻
𝜕𝐩

, (B.12)

half-kick of momentum: 

𝐩𝑛+1 = 𝐩𝑛+ 1
2
− ℎ

2
𝜕𝐻
𝜕𝐪

. (B.13)

This integrator is second-order accurate, with a local truncation error of (ℎ3) and a global error of (ℎ2). Its symplectic nature 
ensures the preservation of phase-space volume, making it particularly suitable for long-term integration of Hamiltonian systems. 
The algorithm is time-reversible, and although the Hamiltonian is not exactly conserved at each step, the energy error remains 
bounded, typically exhibiting small oscillations around the true value without secular drift. The kick–drift–kick decomposition 
corresponds directly to the standard velocity-Verlet scheme but emphasizes the separation of momentum and position updates, 
which is convenient for numerical implementation.

For the calculation of the Lyapunov exponents, one also needs to numerically integrate the variational equations. This integration 
must be carried out using a symplectic integrator [201]. To rewrite the variational equations in a form suitable for the same 
symplectic scheme, let us define a trajectory in the 2𝑁-dimensional phase space by the vector 𝐱(𝑡) = (𝐪(𝑡),𝐩(𝑡)). Hamilton’s equations 
[Eq. (B.10)] can then be expressed in matrix form as 

𝐱̇ =
(

𝜕𝐻
𝜕𝐩

− 𝜕𝐻
𝜕𝐪

)𝑇
= 𝐉2𝑁 ⋅ 𝐃𝐻 (𝐱(𝑡)), (B.14)

where 

𝐃𝐻 (𝐱(𝑡)) =
(

𝜕𝐻(𝐱(𝑡))
𝜕𝑞1

𝜕𝐻(𝐱(𝑡))
𝜕𝑞2

⋯
𝜕𝐻(𝐱(𝑡))
𝜕𝑞𝑁

𝜕𝐻(𝐱(𝑡))
𝜕𝑝1

𝜕𝐻(𝐱(𝑡))
𝜕𝑝2

⋯
𝜕𝐻(𝐱(𝑡))
𝜕𝑝𝑁

)𝑇
(B.15)

is the gradient of the Hamiltonian evaluated at 𝐱(𝑡), and 

𝐉2𝑁 =
(

𝟎𝑁 𝐈𝑁
−𝐈𝑁 𝟎𝑁

)

, (B.16)

with 𝐈𝑁  the 𝑁 ×𝑁 identity matrix and 𝟎𝑁  the 𝑁 ×𝑁 zero matrix. An initial deviation vector 𝐯(0) = (𝛿𝐪(0), 𝛿𝐩(0)) from an orbit 𝐱(𝑡)
evolves in the tangent space according to the variational equations 

𝐯̇ =
[

𝐉2𝑁 ⋅ 𝐃2
𝐻 (𝐱(𝑡))

]

⋅ 𝐯, (B.17)

where 𝐃2
𝐻 (𝐱(𝑡)) is the Hessian of the Hamiltonian evaluated at 𝐱(𝑡): 

𝐃2
𝐻 (𝐱(𝑡)) =

⎛

⎜

⎜

⎝

𝜕2𝐻
𝜕𝐪2

𝜕2𝐻
𝜕𝐪𝜕𝐩

𝜕2𝐻
𝜕𝐩𝜕𝐪

𝜕2𝐻
𝜕𝐩2

⎞

⎟

⎟

⎠

=

(

𝐇𝑞𝑞 𝐇𝑞𝑝

𝐇𝑝𝑞 𝐇𝑝𝑝

)

. (B.18)

Eq.  (B.17) is linear in 𝐯 with time-dependent coefficients given by 

𝐉2𝑁 ⋅ 𝐃2
𝐻 (𝐱(𝑡)) =

(

𝟎𝑁 𝐈𝑁
−𝐈𝑁 𝟎𝑁

)(

𝐇𝑞𝑞 𝐇𝑞𝑝
𝐇𝑝𝑞 𝐇𝑝𝑝

)

=
(

𝐇𝑝𝑞 𝐇𝑝𝑝
−𝐇𝑞𝑞 −𝐇𝑞𝑝

)

. (B.19)

Splitting Eq. (B.17) into the components 𝛿𝐪(𝑡) and 𝛿𝐩(𝑡), we obtain 
𝛿𝐪̇(𝑡) = 𝐇𝑝𝑞 ⋅ 𝛿𝐪 +𝐇𝑝𝑝 ⋅ 𝛿𝐩, (B.20)

𝛿𝐩̇(𝑡) = −𝐇𝑞𝑞 ⋅ 𝛿𝐪 −𝐇𝑞𝑝 ⋅ 𝛿𝐩.
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Since the Hamiltonian [Eq. (B.9)] is separable, 𝐇𝑞𝑝 = 𝐇𝑝𝑞 ≡ 𝟎, and the variational equations reduce to 
𝛿𝐪̇(𝑡) = 𝐇𝑝𝑝 ⋅ 𝛿𝐩,
𝛿𝐩̇(𝑡) = −𝐇𝑞𝑞 ⋅ 𝛿𝐪.

(B.21)

These equations can be integrated together with the main trajectory using the velocity-Verlet integrator:
half-kick of momentum: 

𝛿𝐩𝑛+ 1
2
= 𝛿𝐩𝑛 −

ℎ
2
𝐇𝑞𝑞(𝐪𝑛) ⋅ 𝛿𝐪𝑛, (B.22)

drift of position: 
𝛿𝐪𝑛+1 = 𝛿𝐪𝑛 + ℎ𝐇𝑝𝑝(𝐩𝑛+ 1

2
) ⋅ 𝛿𝐩𝑛+ 1

2
, (B.23)

half-kick of momentum: 

𝛿𝐩𝑛+1 = 𝛿𝐩𝑛+ 1
2
− ℎ

2
𝐇𝑞𝑞(𝐪𝑛+1) ⋅ 𝛿𝐪𝑛+1. (B.24)

Fourth-order Yoshida integrator

The fourth-order Yoshida integrator [200] is a composition of three second-order symplectic steps (velocity-Verlet) with carefully 
chosen coefficients 𝛼 and 𝛽, which cancel lower-order errors and yield an overall fourth-order method. Let us consider again the 
separable Hamiltonian function, given by Eq. (B.9). Let ℎ be the full time step. The coefficients 𝛼 and 𝛽 are defined by 

𝛼 = 1
2 − 21∕3

, 𝛽 = − 21∕3

2 − 21∕3
. (B.25)

The integrator advances the system from 𝑡𝑛 to 𝑡𝑛+1 = 𝑡𝑛 + ℎ via three consecutive velocity-Verlet updates:
first velocity-Verlet step with step 𝛼ℎ: 

(𝐪(1),𝐩(1)) = VV(𝐪𝑛,𝐩𝑛, 𝛼ℎ), (B.26)

second velocity-Verlet step with step 𝛽ℎ: 
(𝐪(2),𝐩(2)) = VV(𝐪(1),𝐩(1), 𝛽ℎ), (B.27)

third velocity-Verlet step with step 𝛼ℎ: 
(𝐪𝑛+1,𝐩𝑛+1) = VV(𝐪(2),𝐩(2), 𝛼ℎ), (B.28)

where VV(𝐪,𝐩, 𝛥𝑡) denotes a single velocity-Verlet step of size 𝛥𝑡. This composition results in a fourth-order symplectic integrator 
that preserves phase-space volume and exhibits bounded energy errors over long times. The same sequence of steps can be applied 
to variational vectors 𝛿𝐪 and 𝛿𝐩 for the computation of Lyapunov exponents.

Data availability

I have shared the source code to reproduce all the results in GitHub and in the Supplementary Material.
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